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Abstract

We consider two classes of Jacobi matrix operators in /2> with zero diagonals and with
weights of the form n* + ¢, for 0<a<1 or of the form n* 4 ¢,n*~! for a> 1, where {c,} is
periodic. We study spectral properties of these operators (especially for even periods), and we
find asymptotics of some of their generalized eigensolutions. This analysis is based on some
discrete versions of the Levinson theorem, which are also proved in the paper and may be of
independent interest.
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0. Introduction

It is well-known that for many types of operators their spectral properties are
tightly related to some properties of the so-called “generalized eigenvectors™ (i.e.
solutions of an equation which is formally similar to the eigenequation, but these
solutions need not belong to the space on which the operator acts). In the case of
infinite Jacobi matrix operators the subordination theory of Khan and Pearson [14]
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is a significant example of the above relation. In these cases the generalized
eigenvectors are solutions of second-order linear difference equations.

The aim of this paper is to find asymptotics of these “generalized eigensolutions”,
and to show some interesting spectral consequences of the asymptotic behaviour for
some classes of Jacobi matrices. This asymptotic and spectral analysis is provided in
Section 2. The main two classes studied here are Jacobi matrices with zero diagonals
and with weights being some perturbations of the sequence n*.

In the first considered case 0 <o<1 and the perturbation is periodic. The most
interesting result is the appearance of the gap in the absolutely continuous spectrum
for the even period of the perturbation—this is a partial generalization of a result
from [16].

The second one is the case with «>1 (rapidly increasing weights) and with the
perturbation of the form ¢,n*~!, where {c,} is an even-periodic sequence. Under
some extra assumptions we prove that the Jacobi operator is self-adjoint (which is
false for the unperturbed weights!) and has only purely point spectrum.

In this section, we also show an example of a Jacobi matrix with divergent
sequence of transfer matrices, which can be easily studied by asymptotic
methods.

Section 1 is devoted to some abstract results which are used as ‘“‘technical
asymptotic tools” in Section 2. The basic result on asymptotic behaviour for
difference equations was initiated by Poincaré and later improved by Perron (see e.g.
[5,13]). The more subtle asymptotic behaviour of solutions of difference equations
is provided by the so-called discrete Levinson theorem (see [1] and the above
mentioned book [5] for details) being analogs of the Levinson theorem on
the asymptotic behaviour of solutions of some ordinary differential equations—see
[3]). The history of this kind of discrete asymptotic results is already long.
For instance, one of the first such results was published (without proof) by Evgrafov
[6], however, it contains some errors (see [1]). In Section 1 we also deal with
some discrete versions of the Levinson theorem for a system of d linear difference
equations. The main Lemma 1.1 is an analog of Levinson’s fundamental result
for the asymptotic integration of perturbations of diagonal differential systems
(see [3]). The difference between Theorem 1.1 and the corresponding results from
the literature (e.g. [1]) is that we formulate the assumptions guaranteeing the
existence of ome solution with the special asymptotic behaviour, while in
the literature some assumptions, guaranteeing the existence of a base of such
solutions are the most frequently formulated ones. Moreover, some of our
assumptions have more general form. However, they are also more abstract, and
thus we formulate also some consequences of this theorem, which can by applied
more directly (Theorems 1.2-1.7). Especially, satisfactory results are obtained for
D'—diagonalizable systems (Theorem 1.4) and for d = 2 (Theorems 1.6 and 1.7).
One of the obtained results is a discrete version of the Hartman—Winter theorem [7]
(Theorem 1.3).

The results of Section 2 illustrate the possibility of studying various families of
Jacobi matrices from a common perspective and, in our view, with simpler proofs.
Moreover, any new extension of the discrete Levinson-type theorem should allow to
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receive new applications to spectral analysis of Jacobi operators. We plan to study
such extensions in future.

Notation. The set of integers is denoted by Z, and N = {1,2,3, ... }. Let us fix de N.
By M;(K) we denote the set of d x d matrices with entries in K for K = C or R. We
fix an arbitrary norm || - || in C? and we use the same symbol also for the induced
operator norm in M, (C). For se{l,...,d} the sth standard base vector of C’ is
denoted by ey, if veC?, then the sth coordinate of v is denoted by v, or (v),, and
diag(v) or diag(vy, ..., vy) is the diagonal matrix from M,(C) with vy, ..., v, being the
successive diagonal entries. We shall use the following convention for products of
matrices (or numbers): H;:k A(j) equals A(!), ..., A(k) if I>k, if | = k it equals A,
and if / <k it equals 7 (of 1).

For NeZ and for X = K, K¢ or My(K) we denote by Iy(X) the set of all
sequences x = {x(n)},> y with x(n)eX. If xely(X) and p>0, then xe/ (X) iff

S xm)|)P < + oo, and xe DY (X) iff S [|x(n+ 1) — x(n)|| < + oo, where in
the case X = K we put || - || = | - |. Moreover, /(X) = Uy, Iv(X) and similarly for
P(X) and D'(X). We often omit ‘(X)’ in all the above symbols when the choice of X
is clear (e.g. we write /5, D', [). We use the symbol — to denote the convergence of a
sequence, and for a convergent x = {x(n)} €/(X) the symbol x., usually denotes the
limit of x (for matrix sequences the capitals are used, e.g. 4(n) > A, ). Observe that
all D' sequences (also called bounded variation sequences) are convergent, and thus,
for instance, the symbol 4., has sense for any {A4(n)}eD'(M,(C)). The symbol
discr 4 denotes the discriminant of the characteristic polynomial of 2 x 2 matrix 4,
ie., discr 4 = (tr A)* — 4 det 4.

For xeR the integer part of x is denoted by Ent(x), and the sign of x by sgn(x)
(i.e., sgn(x) = x/|x| for x#0 and sgn(0) = 0).

1. Asymptotic behaviour of solutions of discrete linear systems

Let {A(n)},,, €/(Ma(C)), where nge Z is fixed, and consider the equation

x(n+1) = A(n)x(n) for n=ny. (L.1)

Any sequence x = {x(n)},,, €l(C?) satisfying (1.1), is called a solution of (1.1). If
N=ng,and X' = {xX'(n)},- v e(C?) satisfies X'(n + 1) = A(n)x'(n) for n> N, then we

call X' a solution of (1.1) for n=N. If we assume that

det A(n)#0 for n=ny, (1.2)

then the space of all the solutions of (1.1) is d-dimensional, and any solution x is
uniquely determined by the formula x(n) = H”_]

Lj=no
arbitrary vector from C?. Unfortunately, this formula usually does not give any
direct asymptotic information about the solution.

A(f)xp,, n=ng, where x,, is an
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There are many results concerning various kinds of asymptotic behaviour
obtained for various assumptions on {4(n)},., . The results presented here are
some discrete versions of the Levinson theorem (the analogs of the Levinson theorem
on the asymptotic behaviour of solutions of some ordinary differential equations—
see [3]).

Let us first precise what kinds of asymptotic behaviour will be considered here.

Definition 1.1. Let yel,, (C) with y(n)#0, and let x,vel, (C?) be such that x(n) =
y(n)v(n) for n=ny. Then x

(a) has the weak asymptotics y(n) iff v is bounded and inf,, >, ||v(n)||>0;
(b) has the asymptotics y(n)vy, iff v(n) > vy, and vy, #0.

We also use the standard notation: x is O(y(n)), when v is bounded for x, v and y
as above. Let us first consider the case of perturbed diagonal systems, that is assume
that

A(n) = A(n) + R(n), n=ny, (1.3)
where {A(n)},,>,,, {R(n)},>,, €/(Ma4(C)) and
A(n) = diag(4(n), ..., 2a(n)), A(n)#0, s=1,....d, n=ny. (L.4)
For s=1,...,d and n,n’ >n define
) =1] 40)- (1.5)

Jj=n

Let us denote by (DIAG) the assumptions and notations (1.2)—(1.5).

Observe, that in the case R(n) = 0 there exist solutions xi, ..., x; of (1.1) given by
xs(n) = @ (ng,n — 1)ey (and thus these solutions form a base of the space of all
solutions of (1.1)). In particular, x; has asymptotics ¢,(ng,n — 1)e;. The natural
question to ask is: what kind of more general assumptions can guarantee, at least
partially, the similar asymptotic behaviour of a solution? To answer this question we
first formulate a lemma. In the lemma we use NyeZ instead of ny, since we shall
chose appropriately large Ny>=ng later.

Denote P, = diag(es), s =1, ...,d. Let yely,(C), y(n) #0. Suppose that (DTAG)
holds with ng = Ny and define

o(n) = — M R(j 1.6
)= 3 P PR (1.6)
By(n) = E_j “”<’ ’II P.R()| (1.7)

forn=Ny, s=1,...,d.
We start with the following general result concerning asymptotic formula of a
solution to (1.1).
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Lemma 1.1. Suppose that (DIAG) holds with ny=Ny and that
me{l,...,d}, Sc{l,...,d} are such that

sup (Z os(n) + Z ﬁs(n)> =c <l (1.8)

n=No \ ses s¢S
and
No,n—1
sup W‘zq<+o@. (1.9)
n=Ny V(n)

Then Eq. (1.1) with no = Ny has a non-zero solution x being O(y(n)). Moreover, this
solution has a form

No,n—1
| | (1.10)
7(n)
where
CZHemH
Fmll< (3 aln) + 3 Bl )20 (1)
seS s¢S I
Proof. For n,n' >N, define &(n,n') = H]",:n/l(]) Let X, = {xely,(C): [[x]], < +
o0}, where ||x||, = sup, y, 2L For xe X, we put

n—1

(Kx)(n) = Y &(No,n— 1)®(Ny,j) ' PR()x(j)
J=No
for se S, n>= Ny and similarly, for s¢ S, n>= N,
+ 0

(Lex)(n) =Y ®(No,n — 1)B(No,j)~ PsR()X(j).

Jj=n
Observe, that the series defining (L,x)(n) is convergent by (1.8). Moreover, we have

M<as(n)||x||y, %@Anﬂxlb (1.12)

v(n)]

forseS, s'¢S. Thus K; and Ly can be treated as a bounded linear endomorphism of
the Banach space (X, || -|,). Define D= 3" ¢ K — >, Ly By (1.12)

%< (Z ay(n)+ 3 ﬁAY(n)>|IXI«,7 (113)

ses s¢S
and therefore by (1.8) [[D|,<ci, where || - ||, is used also to denote the operator
norm induced by the norm || - [|, in X;,. Let now bely,(CY), b(n) = @,,(No,n — 1)ey

for n>No. By (1.9) be X, and |[|b||, <c2|en]|. Consider the equation for xe X;
(I — D)x =b. (1.14)
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Since [|D||,<c1<1 this equation has a unique solution x = (1 — D)"'b and x#0
since b#0. On the other hand, by the definitions of K, and Ly, since #(N,j) and P;
are diagonal (and thus they all commute) and since Zle Py, =1eM;(C), a solution
of (1.14) is a solution of (1.1) for ny = Ny. (Equality (1.14): x = b + Dx is a kind of
the variation of constants formula for (1.1): x(n + 1) = A(n)x(n) + R(n)x(n)). The
solution x is O(y(n)) since x€ X,. Now taking r(n) = y(n)~' (Dx)(n) and using (1.13)
we obtain (1.11) since

Hb”/ <CZ||€m||

< . O
1 - HD||} I —¢

-1
[Ix[l, <17 = D), 11l <

We shall use the above lemma to prove some results on existence of
solutions having asymptotics (in the sense of Definition 1.1) with the growth
¢,,(no,n — 1), i.e., with the growth of one of the solutions of the unperturbed system
(with R(n) = 0). Before we formulate the first theorem, let us note the following
simple fact.

Remark 1.1. Let Ny>=n,. Suppose that (1.2) holds and that
{4(m)},5,, €1(C), A(n)#0. If ¥ €ly,(C?) of the form x'(n) = (H/”:_]{,0 LGNV (n) is a
solution of (1.1) for n>= Ny, then there exists a solution xel,,o(([)d) of (1.1) having the
form x(n) = ([T*=} 4(j))v(n), with v(n) = v/ (n) for n=Ny.

-/ =Ho

Assume (DIAG) and for n>=Ny>=ny, m,se{l,...,d} define

_ & [eslon = D [[[PRG)]]
Oms(No, 1) _j:ENo o G| TaO) (1.15)
_ 230: gom(”vj_ 1) HPAR(/)”
ﬁms(n) - 4 %(”J— 1) MS(/)' . (116)

Theorem 1.1. Assume (DIAG) and let me{1, ...,d}, S<={1,...,d}, and Ny=ny.
() If
sup Z 0tms(No, 1) +Z Ps(n) | =c<1, (1.17)
n=No \ ses s¢S

then Eq. (1.1) has a non-zero solution x being O(¢p,,(no,n — 1)). If moreover ¢ <3,
then x has the weak asymptotics @,,(np,n — 1).

(b) If
Vses 1ir+n Ops(No, ) =0 and Vs liIP Bs(n) =0, (1.18)

then Eq. (1.1) has a solution with the asymptotics ¢,,(no,n — 1)ep.
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Proof. To prove version (a) we can apply Lemma 1.1 with y(n) = ¢, (No,n — 1),
since then o(n) = aus(No,n), f(n) = p,(n) for n=Ny and ¢, =¢, ¢, = 1. Thus
using Remark 1.1, we obtain the existence of a non-zero O(g,,(no,n — 1)) solution x
such that x(n) = ¢,,(ng,n— 1)v(n) for n=ny, where v(n)=e,+r(n) with
||r(n)|\<@ for n= Ny due to (1.10) and (1.11). But if ¢<4, then <1, and thus
x has the weak asymptotics ¢,,(n9,n — 1). To prove version (b) observe first that
from (1.18) and from the fact that

s (N, 1) < s (No,n)  for n=Ny= Ny (1.19)

it follows that (1.17) holds with c<% and with some N}, > N, in the place of Ny. Thus
proceeding as in the proof of the version (a), we find a solution x such that x(n) =
q)m(no7 n— 1)(€m + r(n)), where ||r(”)|‘<%||em||(zses oth(]V(h l’l) + Zx(%S [))mx(n)) for
n=N| due to (1.11) and (1.19). Therefore, #(n) -0 by (1.18) and hence x has the
asymptotics @,,(ng,n — 1)e,. O

The proofs of the discrete Levinson theorems from [1,5], as well as the proof of
their primary continuous version [3] are based on the variation of constants formula
and on the method of successive approximation, which is in fact similar to the
inversion of the (I — D) operator used here.

As an illustration of the above considerations let us show that Benzaid-Lutz
theorem (see [1,5]) can be easily proved by the use of Theorem 1.1.

Theorem 1.2. Assume (DIAG) and for s,te{l, ...,d} set

n,n

Cy = n,i}l}pnq % . (1.20)
Suppose that for any s,te{1, ...,d} either

nLirIlm % =0 and Cy<+ o (1.21)
or

Ciy< + 0. (1.22)
If for any se{l, ...,d}

+oo0 .

]; ||ﬁ((;))|||< + o0, (1.23)
then there exists a base xy, ..., xq of the space of solutions of (1.1) such that x,, has the
asymptotics ¢,,(no,n — e, form=1,...,d.

Proof. Let us fix me{l,...,d} and choose Ny=mny and S = {se{l,...,d}:
Eq. (1.21) holds with r = m}. Thus if s¢.S then C,;< 4 o0, and lim,_, ; o, f,,,(n) =
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0 due to (1.23). Let s€S and define

S| (3 NI n07n_1 P I’lo,j—l PyR(j
196) = 7y 2= O] = D [P RG]
q’m(”Oan - 1) (ps(n()aj - 1) |/“v(/)‘
for n,j=ng, where y,(-) is the characteristic function of the set {ng,...,n— 1}. By

(1.21) limn_,ﬂcf,,[s] () = 0 for any j>no. Moreover,

s n = DIIPROI _ -  [IRG)]
Puln =D 1A " 140)]

for n,j>=ngy. Thus, using the Lebesgue theorem on majorated convergence we obtain

20

N

limy, - 4o O s (19, 1) = 0, since o, (19, 1) = ;;Cz] f,,[s] (j). Therefore, by Theorem 1.1,

there exists a solution x,, with the asymptotics ¢,,(ng,n — 1)e,. Now xi,...,x4 is a
basis, since the system ey, ..., e¢; and thus also x;(n), ..., x4(n) for large n are linearly
independent. [

The typical situation when the assumptions of the above theorem are satisfied is
the simple modulus limit case, that is the case when (assuming (DIAG))

An)—> Ay, =diag(lico, s Adoo)
with Ao | #|Aseo| for s#¢, Ao #0, s,0=1,....d (1.24)
and

{R()},2 € 1" (1.25)

The following two-dimensional result can be immediately obtained from the above
theorem.

Corollary 1.1. Let d = 2. Assume (DIAG) and (1.23) for s =1 or 2. If there exist
0<d, M < + oo such that

@y (n, 1)

<M,
(/72(7’1, 1’1/)

vn.,n’ >ny 0 <
then the assertion of Theorem 1.2 holds.

The finishing perturbed diagonal system result considered here may be treated as a
discrete version of the Hartman—Winter theorem [7]. It refers again to the case d = 2
with the weaker then (1.25) assumption on the perturbation. A more general discrete
analogue of the Hartman—Winter theorem was also given by Benzaid-Lutz [1,
Corollary 3.4]. For the reader’s convenience we present our version together with its
simple proof.
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Theorem 1.3. Let d = 2. Assume (DIAG) and (1.24). Suppose that R(n) = Rp(n) +
Rap(n), where

_ ri(n), 0 _ 0, ria(n)
RD(n)_< 0, 7’22(”)>’ RAD(n)_<V21(”)> 0 )7

and {Rap (1)}, €%, {Rp(n)},s,, €!'. Then there exists a base x\, x, of the space of
solutions of (1.1) such that x,, has the asymptotics ¢,,(ng,n — 1)ey,, for m =1,2.

To prove this theorem we need the following lemma.

Lemma 1.2. Suppose that {b(n)},=yel(C), where  p>1, and
{a(n)},-y€l(C), a(n)—a. with #1, a(n)#0. Then the equation

u(n+1)=am)u(n)+b(n), n=N (1.26)

doy

has a solution u = {u(n)},- y €l (C).

Proof. Suppose first that |a,|>1 and observe that u given by

+ o0 -1
u(n) = —Z b(k) (ﬁ a(s)) , n=N
k=n s=n

is a well-defined solution of (1.26). Choose 0 <x< 1 and No> N such that |a(n)] ™' <o
for n= Ny, and define two sequences on Z
- 0 for n<Ny, _ o for n<o0,
b(l’l) = o((n) —
|b(n)| for n= Ny, 0 for n>0.

We have |u(n)| < (h*a)(n) for n> Ny and thus, by Young’s inequality, ue /”(C) since
g is an I' sequence on Z. Now suppose that <1 and consider u defined by

2259

n—1

u(n) = nii b(k) H a(s), n=Ny,
k=N,

s=k+1

where No=N, 0<a<1 and |a(n)|<a for n=Ny. This is an / solution of (1.26) for
n= Ny, since similarly to the first case we have |u(n + 1)|<(b#&)(n) for n> Ny, where

. o"  for n=0,
a(n) =
0 for n<O. O

Proof of Theorem 1.3. We apply here the idea of Harris—Lutz method (see [9]).

Suppose that {Q(n)},,, €*(M2(C)), On) = (qz(();z) ql(()n)) Then there exists

N=ng such that (1 + Q(n)) ™" = (1 +&(n))(I — O(n)) for n>N, where {e(n)},> y€/".
Let x = {x(n)},-y€/(C*) and define z = {z(n)},.y by the formula z(n) = (I +
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Q(n))”'x(n). Thus x is a solution of (1.1) for n> N iff z is a solution of the equation
z(n+1) = [A(n) + S'(n) + S"(n))z(n), n=N, (1.27)
where {S"(n)},- y€!'(M>(C)) and
S'(n) = A(n)Q(n) — Q(n + 1)A(n) + Rap(n). (1.28)

Assume that we have chosen {Q(n)},> y such that S’(n) =0 for all n>N. Then
Eq. (1.27) has a form satisfying the assumptions (DIAG), (1.24) and (1.25), and
consequently, by Theorem 1.2 this equation has a base z, z; of the space of solutions
of this equations, such that z, has the asymptotics ¢,,(rn9,n — 1)e,, for m =1,2.
Hence, the same is true for Eq. (1.1), because we can take xj, x, defined by x,,(n) =
(I4+ 0(n))zm(n), m=1,2, as the base for n= N and then we can use Remark 1.1 to
extrapolate this base for n>ny. It remains to prove that there exists some {Q(n)}, -,
satisfying the above conditions. Observe that the condition S’(n) = 0 can be written
in the form of two independent scalar equations for {¢(n)},- y and {g2(n)},> y:

Ja(n) _ Ja(n)
) qi(n) +ri2(n), @n+1)= )

n>N. But by Lemma 1.2 the both equations have solutions in />. [

qi(n+1) = q2(n) + 121 (n),

We shall consider now the more general case when the unperturbed system is not
necessarily diagonal. Thus, in the place of (1.3) we assume that

A(n) = V(n) 4+ R(n), n=n, (1.29)

where {V(n)},>,., {R(1)},=,, €[(M4(C)). The diagonality of {V(n)},.y will be
replaced by a weaker assumption, namely, by D'-diagonalizability.

Definition 1.2. Suppose that {V(n)},,.,{4(n)},,, €/(Ma(C)) and that all A(n) are

diagonal. Then {V(n)} is D'-diagonalizable to {A(n)} iff there exist n; =nq

nz=ngy nz=ngy
and {T(n)},-, €D'(M,(C)) such that det T, #0, and for n>n,
V(n) = T(n)A(n)(T(n))~". (1.30)

Moreover, if the above holds, then T, is called a diagonalizing limit.

Observe that in this definition A(n) has to be a diagonal form of V(n) only for
large n. Observe also that the existence of the limit 7', follows from the assumption
{T(m)}y>n €D

Let us denote by (D'-DIAG) the following assumptions and notations: (1.2) and
(1.29), {V(n)},,, is D'-diagonalizable to {A(n)} with a diagonalizing limit T,
(1.4) and (1.5).

We can formulate now the main theorem for D'-diagonalizable case using
assumptions of the form similar to these used in Benzaid—Lutz theorem.

nz=ngy
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Theorem 1.4. Assume that (D'-DIAG) holds, and that for some me{1, ...,d} there
exists Sc{l,...,d} such that

Voes lim [ 200 0 g o< + oo (1.31)
n-+w |, (1, n)
and
VS¢SCms< + o0, (1.32)
where Cy is defined by (1.20). If for any s,te{l, ..., d}
As(n)
1.33
nsl;lg Zu(n) st ( )
and
+o .
HR(])||<—|—OO, (1.34)

2 )

then Eq. (1.1) has a solution with the asymptotics ¢,,(no,n — 1)Tep.

Proof. Suppose that (1.30) holds for n>N=>=ny. Let x = {x(n)}ngNel((Dd) and
define z = {z(n)},> y by z(n) = (T(n))"'x(n). Thus x is a solution of (1.1) for n>N
iff z is a solution of the equation

z(n+1) = (A(n) + R'(n))z(n), n=N, (1.35)
where

R'(n) = (T(n))"' R(n)T(n) + S(n)(V(n) + R(n)) T (n)

with S(n) = (T(n+1))"" —(T(n))”"". We have {(T(n))"'},.yeD', because
det T, #0, and thus {S(n)}nZNell. By (1.33) and (1.30) for any
se{l,...,d},n=N we obtain

IRGI_ . IR (el RG]
T < Ko IS )'<|”m< )T |z,,,<n>|>
IR ) ()
<Ky TEAISE) Wm%(<m“”meH
IR
< & (1oL o)

for some constants K, ..., Ks. Hence by (1.34) Z;fzv ”‘f >|H< + oo, for any s. Now

by (1.31) and (1.32), using exactly the same arguments as in the proof of Theorem 1.2
we can check that Eq. (1.35) has a form satisfying the assumptions of Theorem 1.1(b)
(with N instead of ny and Ny = N). Thus this equation has a solution z with the
asymptotics ¢,,(ng,n — 1)ey,. To finish the proof it is enough to use 7T'(n) > T, and
Remark 1.1. O

A simple consequence of Theorem 1.4 is the following result.
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Corollary 1.2. Assume that (D'-DIAG) holds. Suppose that me {1, ..., d} is such that
Jm(n)

3n12n0‘ 0>0 v.\‘;ém, n=n, 5< "

AOIRE (1.36)

and that (1.34) holds. Then Eq. (1.1) has a solution with the asymptotics
©,,(no,n— 1)T ey

Proof. We can apply Theorem 1.4 taking S .= ¢. O

The remaining part of this section consists of various consequences of Theorem
1.4 which are important for studies of difference operators, especially of Jacobi
operators. The first theorem given below could be treated as the discretization of the
differential Levinson theorem [3, Theorem 8.1], but assumption (iii) has the form
which is rather similar to the main assumption of the Poincaré and Perron theorems.
Although Theorem 1.5 will not be applied in the present paper, it is stated and
proved here due to its usefulness in spectral analysis of some Jacobi operators, see
[11,12]. This result was already formulated by Janas and Naboko [11] (for d = 2 and
without proof; the similar result has been also formulated before by Evgrafov [6], but
his formulation contains serious mistakes—see [1, Section 4]). Our formulation
seems to be a new result, though it is similar to a result from [1].

Theorem 1.5. Assume that A(n) has form (1.29) and that following conditions are
satisfied.

(i) det A(n),det V(n)#0 for n=ny,
(i) {V(n)},>, €D",
(i) lim,o 4o V(n) =: Vo has d non-zero eigenvalues A, ..., iy having distinct
absolute values,
(iv) {R(")}n>n0611~

Then there exists a base xi, ...,xq of the space of solutions of (1.1) such that x,, has
n—1

the asymptotics ([[.=, 2m(j))ome, where Jpm(n) = Ame, Am(n) is an eigenvalue of

-J=Ho
V(n), and vy is an eigenvector of Ve, for Ame, for m =1, ... d.

We need the following D'-diagonalizability criterion (also being a discrete version
of a result from [3]) to prove this theorem.

Lemma 1.3. Suppose that {V(n)},., €D'(My(C)) and lim, o, V(n) =: Vo, has d
distinct eigenvalues 41, ..., Ao - Let for m =1, ...,d {4n(n)},,, be such that ,(n)
is an eigenvalue of V(n) and Ay,(n)— o . Define A(n) = diag(1;(n)...,14(n)) and
Ay =diag(lio -+, Ados ). Then {V(n)} is D'-diagonalizable to {A(n)} with a
diagonalizing limit T, such that Vy, = T Ao T;l.

n=ngp n=ngp

The proof of this lemma follows immediately from [10, Lemma 1.7].
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Note that the sequences {4, (1)}, ,, from the lemma exist and are unique for large
n (i.e. two sequences of eigenvalues of V' (n) with the same limit /,,,, have to be equal
for n large enough).

Proof of Theorem 1.5. Define A(n) and A, as in the lemma. Thus all the
assumptions of (D'-DIAG) are satisfied. Let me{l,...,d} and set S=
{se{l,...,d}: |}. Condition (1.31) holds since A(n) —> A . If s¢S then
for s = m we have C,,; = 1, and for s#m we have |4, | > |Ano
Cus< + 0. Thus (1.32) holds and (1.33) and (1.34) are obvious, since Ay, #0 for
any s and (iv) holds. Hence, by Theorem 1.4, for any m Eq. (1.1) has a solution x;,
with the asymptotics (H]":_,:O 2 (7)) mes , Where vy = Top e, #0, and by Lemma 1.3
VooUmsc = Tovooem = jvmoovmom O

The most important in Theorem 1.5 were the assumptions that
{V(m)},=,,€D", {R(n)},>, €l' and that the eigenvalues of V¥, have distinct
absolute values. Below we show some new two-dimensional results for the cases
when the eigenvalues of V', may have equal absolute values. Nevertheless, all these
results refer to the case when V, is diagonalizable. In the first result this
diagonalizability follows from the condition discr V', <0, and the eigenvalues are
distinct, but have the same absolute value since V., is real.

Theorem 1.6. Let d = 2. Assume (1.29) and conditions (i), (ii), (iv) of Theorem 1.5. If
V(n)e My(R) for n=ny and discr Vo, <0, where Vo =1lim,_ o, V(n), then the
assertion of Theorem 1.5 holds.

Proof. Observe first that the condition V., € M>(R) and discr V., <0 follow that
I = 2o ¢ R. Thus A1, # A2, and the assumptions of Lemma 1.3 are satisfied.
Moreover, discr V' (n)<0 for large n, which gives |1;(n)| = |42(n)|. Hence for any
me{1,2} condition (1.36) holds. Condition (1.34) also holds, because A, #0 and
{R(n)},,, €!'. Hence the assertion follows immediately from Corollary 1.2. [

Note that if we assume in the above theorem that discr V., >0 (instead of
discr V', <0), then Theorem 1.5 can usually be used.
In the last theorem we investigate two cases when V., = al.

Theorem 1.7. Let d = 2. Assume (1.29) with det A(n),det V(n)#0 for n=ny, and
suppose that V(n) has the form

V(n) =am)I + pn)S(n), n=no, (1.37)
where
0) {S(1)},.,,€ D' (Ma(R)):
(i) {a(n)},>,, {P( )} uzn, €1R), a(n)—>an, #0, p(n)—0;

(ifi) {R(n)},,, €!'(Ms(C).



322 J. Janas, M. Moszynski | Journal of Approximation Theory 120 (2003) 309-336

Let S, =1lim,_, o, S(n) and consider two cases:

(a) discr S, <0; (b) discr S, >0 and sgn(p(n)) is constant and non-zero,
and denote by iy, ll,,, the eigenvalues of S.,, where in case (b) sgn(‘M)(,uzOO -

Ui )>0. For Eq. (1.1) there exists

o a base x1, x; of the space of solutions in case (a)
o a non-zero solution x| in case (b)

such that x,, has the asymptotics

n—1
< IT @i +p(i)#m(i))>smoo
J=no

for (a)y m = 1,2, for (b) m =1, where p,,(n) > t,,.., W,(n) is an eigenvalue of S(n),
and sy, is an eigenvector of S, for I, .

Proof. In the both cases (a) and (b) u;., #i».,. Thus, we can apply Lemma 1.3 for
{S(n)},,, and using (1.37) we conclude that {¥'(n)},-,, is D'-diagonalizable to
{A(n)}, 5, > Where A(n) = diag(41(n), A2(n)) with Z,(n) = a(n) + p(n)w,,(n), with a
diagonalizing limit 7., such that S., = T..diag(p,,, )T, We shall use now
Corollary 1.2. By (ii) and (iii) (1.34) holds. In case (a) we obtain (1.36) for any choice

of me{1,2} since 4,(n) = A1(n) for large n (because a(n),p(n)eR). In case (b) for
m =1 (1.36) holds, since by (ii) 24

Z2(n)
and det V' (n)#0) and for ¢ == sgn("%)
p(n)

21(n)] = |a(n)] (1 + ’m

—1 (4(n) #0 since it is an eigenvalue of V' (n)

), and for n large enough

p(n)

a(n)

o)) =l O

aﬂl(n)) <l|a(n)| (1 +

2. Applications to Jacobi matrices

In this section, we consider some infinite Jacobi matrices of the form

0 b(1)
b(1) 0  b2)
b2) 0 b3 ,

where {b(n)},>, has non-zero real terms (the so-called weights). We also consider
corresponding operators J acting in the Hilbert space /7 = [}(C) given by

Ju= Ju
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for u from the maximal domain D(J) = {uel?: Juel?}, where
(Ju)(n) =bn—Dun—1)+b(n)u(n+1), neN

with the convention that 5(j), u(j) = 0 for j<1.
Let 2eR. The equation

(fu)(n) = Au(n), n=2 (2.1

for a complex sequence u = {u(n)},. | we call the generalized eigenequation for J and
/. Note that this equation is “generalized”” because we do not assume that ue /7, and
also because we omit # =1 in (2.1) (and thus usually a solution u is not an
eigenvector of J, even when ue/?). Observe that the generalized eigenequation is a

scalar second-order linear difference equation. It can be written in the equivalent C?
vector form of (1.1) type

d(n+1)=Bn)i(n), nz2, (2.2)

where i(n) = (“(u”(;)l)) eC?, and B(n)e M, (R) are transfer matrices,

0 1
Bmy=| bn—1 i | (2.3)
b(n)  b(n)

As we shall see, in the first two subsections of this section the transfer matrix
sequence is convergent to E, which is given by

0 1
E= ;

and in the last one it is divergent. Our aim is to study the asymptotic behaviour of
some solutions of the generalized eigenequation for J and Z€ R, for some examples
of J. In these examples the transfer matrices do not behave regularly enough to use
the theory developed in the previous section directly for Eq. (2.2). Thus we consider
the equation

x(n+1)=Am)x(n), n=1 (2.4)

for x = {x(n)},>, €l(C?), where

T-1
A(n) = T B(nT +)), (2.5)
=0

~

and T is a certain natural number. Observe, that for any solution x of (2.4) there
exists a unique solution u of the generalized eigenequation for J and 4 satisfying
#(nT) =x(n) for n>=1. Moreover, the correspondence “x-~»u” is a linear
isomorphism of the space of solution of (2.4) to the space of solutions of (2.1),
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and we have

s—1

u(nT +5) = < H B(nT —i—j)x(n)) for n>1, s=0. (2.6)
J=0 P

We shall use the following spectral terminology. If H is a self-adjoint operator
in a Hilbert space, then #.(H), #«(H), #pp(H) are the space of
absolute continuity, of singular continuity, and the pure point space for H
(i.e. the closure of the space spanned by all the eigenvectors for H), respectively;
for a Borel subset G R, #(H) is the range of the spectral projection for H and G,
and ou(H), opp(H), 0(H) are the absolutely continuous, point, and the
singular continuous spectrum of H, respectively. We say that H is absolutely
continuous (purely point) in G iff # g(H)c Hyo(H) (#Hpp(H)), and we omit “in G”
for G = R.

2.1. A class of Jacobi matrices with periodically perturbed weights

In this subsection, the weight sequence is a periodic perturbation of the sequence
n*, ie.,

b(n) =n*+c(n), nx=l, (2.7)
where o€ (0; 1] and ¢ = {c(n)}, ., is a T-periodic real sequence, with a period 7 >2,
and n* + c¢(n)#0 for n>1. Since such weight sequence satisfies the Carleman
condition, J is an unbounded seclf-adjoint operator (see e.g. [2]). We use here
different methods for 7 = 2L and for T = 2L + 1 (with LeN). To study Eq. (2.4) we

shall apply Theorems 1.7 and 1.6. It is convenient to introduce first a subclass of D',
consisting of sequences with a special kind of asymptotics. Assume here that NeZ,

and X = R,C,C? or My(C).

Definition  2.1. Let  xely(X). Then xe D;v* (X) iff  there  exist
X0 €X, 7€(0;1], ae D\ (X) and rel},(X) such that for n>N

x(n) = xo0 +n"a(n) + r(n). (2.8)
We also set D'* (X) = Uy.z D/l\,* (X), and we use the symbols D}\,* and D'* when
the choice of X is obvious. Let xe/(X), x4,a,€X, ye(0;1]. We write

x(M)xxp +n"ay (2.9)
iff there exist ae D'(X), rel'(X) such that (2.8) holds for large n and a(n)—a.,
(thus x must be in D'*(X) in this case).

Note that x.,, y and a, in (2.9) are not uniquely determined, but if (2.9) holds and

at the same time

x(n)xx, +n7d,
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/!

3 / / _
with a.,, @, #0, then x| =x., @,

technical lemma.

=d., and ' = y. We shall use the following

Lemma 2.1. (a) DIIV* (X) is a subalgebra of D)\(X). Moreover, if x'(n)~x, +
nd,, X'(n)xx" +n"a
min(y’,7"),

"o then  (X'x"Ym)xxX X! +n'a,, where y=

] o "
a x" Sfor ¢/ <"
! /" / ! i "
ay, =< d x" +x' d . fory =",
X a’, for ' >y".

(b) Suppose that xe D'*(R), x(n)xx., +n"a, and y(n) = f(x(n)) for large n,
where f is a real C" function in a neighbourhood of x., with m>y~'. Then
y(m) S (x0) + 07 W (x )

Proof. Condition (a) is immediate. To prove (b) we use Taylor’s formula

m—1 r(;
f(xw + [) = Z%tj + R(l), R([) — O(Zm), {50
=

(note, that m>=2 since y<1), and for large n we obtain

y(n) =f(xo +n"a(n) +r(n))

m=1 r(j) NG i ) i
= ) Z@””‘<a<n>>“(r(n>y“+r1<n>

j=0 -]' s=0
m—1 (/) X _

= f 51 “)n (a(n)yY +r(n) =f(xx)
j=0 '

m—1

T (x)aln) + Z%”"”"(a(n»f +ra(n),

where ae D', r,r|,rmel'. Thus, since D' is an algebra, we obtain the assertion of
(b). O

Now define

L fora=1.

{0 for ae(0;1),
0y =
2

We can prove the following result on asymptotic behaviour of the sequence
{A(n)},=, given by (2.5).
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Proposition 2.1. A(n)x A, +n*C), where

) (=D 1 for T =2L,
“ U\ (=DFE for T=2L+1,
O —p+To, —Li
(D7 (=p+To for T =2L,
T LA o+ Ta,
C, =
-k L. 2La,
(=1 PHEERON o T=2L 41
T \ p—2(L+1)o, (L+1)A
with
2L-1 A
p=>Y_(=1Ye(j) for L=Ent(T/2).
=0

Proof. By (2.3), B((nT +j) = E + (s?n) p (()n)> with
J J

s =1 ((157) U )0+ )

gl i)

Using Lemma 2.1 we obtain ¢;(n) ~0 + n~*f;, where

0 for ae(0;1),

fi=T7(cj) —c(—1))+ { T-' fora=1,

and p;(n)~0+ n~"4. Thus
0 0
BnT +j)~E+n* I
VA
and by Lemma 2.1(a) and (2.5) A(n)~E” + n~*C;, where

)G o) (o) = (00

(2.10)

(2.11)
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hence for T'= 2L, using (2.11), we can compute

L-1 0 0 L 0 0
_ Z E2L7172u 2 E2u+z E2L72u A E2u71

u=0 f2u T u=1 f2u71 Ty

TCX TD(
I _L—l f2u )" L 0 0
e S ) ey
_u:O 0 () u=1
L L
Y Rt N
L2 -
_ﬁ Zﬁ:leu—l
Similarly, for T =2L + 1
N L 0 0 L 0 0
— Z EZL—ZM i E2u + Z E2L—2u+l ;‘ E2u—1
u=0 qu ﬁ u=1 f2u—l ﬁ

L (0 O L[4 ot
L 2 : j : s J2u—
u=0 \ J2u T u=1 0 0

Having the above result, we are ready to formulate and prove the theorem on
asymptotic behaviour of generalized eigensolutions for J.

Theorem 2.1. Consider the generalized eigenequation (2.1) for J determined by (2.7)
and for AeR in the following three cases:
(i) T=2L+1,
(i) 7 =2L and |/ >%,
(i) 7 =2L and |) <‘I’i—‘7

where p is given by (2.10). For the equation there exists:

— a base uy, uy of the space of solutions in cases (i) and (ii),
— a non-zero solution uy in case (iii)
of the form

1

m(nT +5) = ( (L+7""nu() )ﬁm(nTJrS), (2.12)
j=1

n=0,s=1,....,T (m=1,2 for () and (ii), and m=1 for (iii)), where

{nm(n)}n>l7{ﬁin(k)}lc}lez(c) are such that '7)11(")_”7)11007 and limkHJroc ﬁm(k)_

Bm(k) =0, with ,,., and with a 4-periodic sequence {Bm(k)}kzl €l(C) defined by the
following formulas:
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Jfor (i)
Mo = M=) T 0 b 0y falk) = (1))
for (ii)

Mooy, = (_1)111+LZ-T—& /Lle _ p2 + 0y,

~ B (=1)'d,, for k=21,
ﬁ’”(k)_{(—l)f“ for k=2t+1,

where dy, = LA((=1)"" iy /122> — p> — p) 7!
Sfor (ii1)
N = =T\ p? = 122 + 0y,
~ (=D'dy  for k=21,
pi(k) = +1
(=1)™d for k=2t+1,

where

(d,d) = { (—Lilp /0> = L2257 1) for 220 or p>0,
,ay) =

(1,0) for 2.=0 and p<0.
Moreover, in cases (1) and (i1) for any n=1 we have

ni(n) = ny(n) (2.13)

and

1/2

b(nT —1) (1 +r(n)) (2.14)

ol = [

with {r(n)},s, €l".

Proof. Consider Eq. (2.4). By (2.5) and by Proposition 2.1 we have (with the
notation of the proposition) (1.2) and (1.29) with ng = 1, {R(n)},>,€!' and V(n) =
Vo +n7S(n), where V,, = Ay, {S(n)},>,€D', and S(n)—>S, = C;. Observe
also that we can assume that S(n)e M, (R), since A(n), Vy,, S € M>(R). Moreover,
for T=2L+1 discrV, =—4, and for T =2LdiscrS,, =4T 2*(p> — L*}?).
Thus, to find asymptotics for some solutions of (2.4) we can use Theorem 1.6 for
case (i) and Theorem 1.7(a) and (b) for cases (ii) and (iii), respectively. Using also
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(2.6) we obtain the solutions of (2.1) of the form

u, (nT + s)
_ s—1
( H +J N (j) )5 ( 1 BT + jyom(n )) (2.15)
i—1 j=0 2
forn=0, s=1,....,T, m=1,2 for (i) and (ii) and m = 1 for (iii), where:
(1) B (l-<_1)m+L)n—] for 1)
() = { (=D for (i) and (i),

) i(=1)™*" for (i)

Am(in) = (L4 07, () { (=1)*  for (ii) and (i)
V(n) for large n,
) Jn(n) > (=)™ i for (i), (—1)*n,,(n) - u,,., for (i) and (i) with

(=1)"iT~*\/L22* — p2 + (=1)*a,  for (i),
:umw =
(=0T ) p? — 1227 + (1) o, for (iii),

(4) Um (n) > Umoo Wlth

{(1,(1)'”1’) for (i),
Uneo =

(1, LA((—= )™ iy [ 1222 — p2 — p)™!)  for (ii),
and for (iii)
— 2 _ 72,21
Ulw:{(ly Li(p++/p*—L22°)"") for 4#0 or p>0,

(0,1) for =0 and p<0.

are the ecigenvalues of

Moreover, we can also assume that
(5) Jm(n)#0 and in cases (i) and (i) 4;(n) = A»(n) for any n>1.

The linear independence of the two solutions of (2.4) follows the some for u}, u} for
(1) and (i1). In cases (ii) and (iii) the formula for #,,., follows immediately from (3). In
case (i), to obtain this formula, we can use (2) and (3) and the following perturbation
theory result.

Lemma 2.2. Suppose that {U(n)},~,., {Q(n)},s,, €(M2(C)) satisfy
Un) = Uy +nQ(n), nzno,

where Q(n)— Qo, Uy = (kal)k7]:1727 Ou = (Qookl)kJ:],QEMZ(CL no=1, a>0.
If Uy, has two different eigenvalues 4y, /2. , then there exist {An(n)},~, €I1(C) for
m=1,2 such that A,(n) are eigenvalues of U(n) for large n and A,(n) = Ao +
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n=*q,(n), where

1 Woo
B |, :172
2w, TUCe|

with we, = (U1 — Ur22)(Qoo11 — Q22) +2(U12Q 021 + Use21Q012)-

qm(n) > 4dmeo =

(We omit here the standard proof, based on the formula for roots of second-order
equation.)

Since the 4,,(n) — s from the lemma for U(n) = V(n) and the ones from (2) are
equal for n-large, thus, by Proposition 2.1 (—=1)""%in,, . = gume = (1) T""%1+

(=1)""*is,, which proves the formula for 7, in case (i).
We have B(n)— E, and therefore, by (4)

s—1
ém(n) ( H B(nT+j)Un1(n)> = fm(n)(ESUmCC)Z + (Pm(nT + S):
2

J=0

where limy_, o, ¢,,(k) = 0. Moreover, E2 = —I, and by (1) &,(n) = au((—=1)"i)"",
where a,, is a non-zero constant. Hence writing k = nT + s we have

' ' #(Omos ) for se2N,
E Vm% —a, | manT
ém(n)( )2 a (( ) l) {iS#’l(v}”m)l for s¢2N’

(Umeo )y for se2N,

. . mik
—am(( 1) ) {(—1)’”!(%1@)1 for s¢2N.

If B, is defined as in the assertion of the theorem, then by (4) we see that
EW(ESV,00 ), = d, B (k) with a non-zero constant ' , for all cases (i)-(iii). Thus it
remains only to prove (2.13) and (2.14) (for cases (i) and (ii)). The first formula is
obvious by (2) and (5). To prove the second one observe, that by (2) and (5) for large n

|1+ 7%, ()| = |det V(n)| = |det A(n)|| det (I — (A(n)) ™' R(n))].

Therefore by (2.3) and (2.5), and the fact that {R(n)},,-, el' we obtain (2.14). O

Remark 2.1. (a) The restriction 1€ R is necessary to apply Theorems 1.6 and 1.7,
since V'(n)e M>(R) is an important assumption for the both of them. We do not
analyse also the points 4 = +# for T = 2L, because we do not have any version of
Levinson theorem in which the appearance of non-trivial Jordan box for S, = C;
can be accepted. Nevertheless, as we shall see, the above asymptotic results are
strong enough to prove important spectral results for J.

(b) For cases (i) and (ii) and o€ (0,1) formula (2.12) does not give any strong
estimate for |u,,(k)|, because (2.13) and re,,,, = 0 follow that

|1 +n%n,,(n)| =1+4+n""e(n) with &n)—0,
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and no further information on ¢(n) can be found on the base of the first part of the
theorem. Consequently no much stronger estimates than

|t (nT + 5)| = o(exp(egn'_“))

for any ¢y >0 can be obtained this way. Much better estimate follows from (2.14).
Namely,

1
Up(nT + 8)| = O ————x | = O(n*?). 2.16
(0T 45| ( b(nT—1)> () (2.16)
In case (i) formula (2.12) contains a key information for us. Since 7., <0
for o€ (0;1) and n;,, < —1 for o =1, there exists g>1 such that |1 +n %y, (n)|<
|1 —gn~!| for large n, and thus

luy(nT +5)| = O(n™9) (2.17)

(for 2 <1 better estimates can be found). Therefore, in particular, u; € /3.

Let us concentrate now on the spectral applications of the asymptotic results for J.
The following result is obtained by the use of subordination theory of Khan and
Pearson [14].

Theorem 2.2. Let J be determined by (2.7). If T =2L+ 1, then J is absolutely

continuous and oac(J) = R. If T = 2L and p is given by (2.10), then J is absolutely

continuous in R\[—l%l; %], Gac(J) = R\(— |’L’|, |/L)) and J is purely point in [— %; %]

Proof. Let us study first the subordinated solutions of (2.1) (see [14]). Define (we use
s.” for subordinated solution)

Sac ={/A€R: there is no s.s. of (2.1) for A},

Ssing ={A€R: the s.s. u of (2.1) for A exists, and (fu)(1) = u(1)}.

For cases (i) and (ii) of Theorem 2.1 the subordinated solution does not exist, by the
Janas and Naboko generalization of Behncke—Stolz lemma (see e.g. [10, Lemma 1.5])

and by (2.16). Thus, for T'=2L+ 1 S,c = R, and for T = 2L S;c D R\[-% lol, "’] Let
T =2L. By (2.17), for |)L|<‘% we have ujel?, which implies that u; is the

subordinated solution. Thus S,c=R\(— ‘ZUZ') Ssingc[—"f";%]. Moreover, if

1€ Sging O (— lel, "’) then Aeop,,(J) and u; is the eigenvector for J and 4. Hence Sine
isa countable set. Therefore, using Khan and Pearson Theorem from [14] (see also
[16, Theorem 1.1]) we obtain:

® for T=2L+1 Hu(J) =1, 0sc(J) =R,
e for T =2L ,%’ oo (J) = Hac(J)  (since we have “<”  and

ol (J) is

,}’f[ ‘pupq (J)m%ac(']) %< {£7}

(JYNHoo(J) = {0}, because #
“L°L )



332 J. Janas, M. Moszynski | Journal of Approximation Theory 120 (2003) 309-336

an eigenspace, or the zero space), ouc(J) = [RE\( ), and A,

SANA

S
i

ﬂ
'L
Hpp(J) (since #'(J) = {0} by countability of Sgne). [

The above result partially generalizes the result of [16] on “the spectral gap” for
Jacobi matrix with double weights, being the special case of J studied here (for
T =2, o= 1, and an appropriately chosen ¢(1) and ¢(2)); see also [4]. It remains an
open problem if the spectrum of J in the gap (—‘%‘; ‘%‘) is discrete (or even finite), as it
is, e.g. in the double weights case.

Note that a proof of the assertion on the absolute continuity in the above theorem
can be also obtained by the use of the so-called H-class of sequences of 2 x 2
matrices—see [16].

2.2. A perturbation of rapidly increasing weights

The next class of Jacobi matrices which can be studied with the help of discrete
Levinson theorems is given by faster increasing weights. Namely let

b(n):n“<l+c(nn)>, nx=1 (2.18)

where «>1 and ¢ = {c¢(n)} is a T-periodic real sequence, with an even period

nez
T=2L,and (1+ @)#0 for n>=1. Since such weight sequence do not satisfy the
Carleman condition, we shall assume also self-adjointness of J. To assure that this is
possible (note that J is not self-adjoint e.g. for ¢(n) = 0), we prove the following
lemma being a generalization for arbitrary L of an example found by Kostyuchenko
and Mirzoev [15] (where L = 1, but with the weights of more general form). Define
(cf. also (2.10))

2L .
p=> (=1)e()).
J=1

Lemma 2.3. J is self-adjoint provided |p|=L(x — 1).

Proof. By Berezanskii [2, Chapter V, Lemma 1.5], it is enough to check that there
exists a solution to (2.1) which is not in /7 for some AeC. Taking A =0 and
computing the two solutions with boundary conditions (u(1),u(2)) = (0,1) or (1,0),
we see that this is true when one of the following conditions holds:

2 2
L R b2i-1
(i) Z(H%)Z—H@; (ii) Z(Hsz+ >=+oo

Using the Gauss test (for the series being the sums of the terms of the above series
for “n=Lk”) we can compute that the condition p>L(a— 1) gives (ii) and
—p=L(a—1) gives (1). O
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Similarly as in the previous subsection, we want to compute now an asymptotic
formula for the sequence of grouped transfer matrices A(n) defined by (2.5). In this
case these computations are much simpler, since we have o> 1 (and thus {1/n*}e/").
Indeed, for any j =0,...,7T — 1, n>1 we can easily obtain

0 0
5 0>+R./(n)7

where f; = T~ (a+ ¢(j) — ¢(j — 1)) and {R;(n)},~,€!"'. Thus for n>1
A(n) = (=1)" +n7'S,. + R(n),

where {R(n)},-, €' and (by the calculations similar to these used in the proof of
Proposition 2.1)

B(nT—i—j):E—i—nl(

x p
sty 0
“ p

0 Z_F
2 T

Thus S, does not depend on /4 and discr S, >0, if p#0.
We can now formulate the theorem on asymptotic behaviour of a generalized
eigensolution and of spectral properties for J.

S, = (—1)F! (2.19)

Theorem 2.3. If p#0, then the generalized eigenequation (2.1) for J determined by
(2.18) and for LeR has a non-zero solution u of the form

u(nT +s) = <ﬁ<1 ! <;+|";J>)>ﬁ(nT+s), (2.20)

=1
n=0,s=1,...,T, where limy_ ., (k) — ﬁ(k) =0, with  being the 4-periodic
sequence defined by:
(0,—-1,0,1) for p>0,

2.21
(1,0,—1,0) for p<O. ( )

0. -few) - {
If, moreover, J is self-adjoint, then J is a purely point operator.

Proof. Define y,,, = (—I)Lfl(% —&—MT‘) and p,,, = (—I)Lfl(% — ‘L}‘), and observe that

[y ., are the eigenvalues of S, satisfying (—1)“(uy, — ., )>0. Thus, by
Theorem 1.7(b) and by (2.6) Eq.(2.1) has a non-zero solution u of the form

(obtained after multiplying by (—I)L of the solution from Theorem 1.7)

u(nT +s) = < 1:[1(1 —j! (gﬂ’}')))(l)“( ﬁB(nT +j)v(n)>2,

j=1 J=0

ey for p>0, Since B(n)— E, we have (2.20)

> =
n=0, s=1,...,T, where u(n)—»{e2 for p<0.

with f(nT + 5) = (=1)""(E*¢;),, where j = 1 for p>0and j = 2 for p<0. Thus using
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E'THs = E2L4s — (Z1)"MES we obtain (k) = (E¥e;),, which gives (2.21). Now,
observe that by (2.20), uel}, since (%+#)>%. Therefore, using the same

subordination theory arguments as in the proof of Theorem 2.2 we obtain the last
assertion of our theorem. [

2.3. A Jacobi matrix with divergent sequence of transfer matrices

The aim of this section is to present an example of Jacobi matrix, for which “the
discrete Hartman—Winter theorem” (Theorem 1.3) can be used to obtain the
asymptotics of solutions of the generalized eigenequation.

We follow here the notation and the definitions of the previous section. We only
change the formula for the weights b(n). Let {a(n)},-, be a real sequence satisfying

a(n)#0, a(n)—>a,, eR\{-1,0,1}, let xe (4, 1], and for n>1 define

b(2n) :g (1 +j>, b(2n — 1) = b(2n)a(n). (2.22)
We have
H(l —|—j> =cn* +o(n*), ¢, >0, (2.23)

J=1
which, by the Carleman criterion, gives the self-adjointness of J (see e.g. [2]). In the

previous section the sequence of the transfer matrices was convergent to the limit E.
Here {B(n)},, is not convergent, but we have

B(2n)—><_2 :)) B(2n+1)—><_2_] (1)> (2.24)

Proposition 2.2. Let J be determined by (2.22). The generalized eigenequation (2.1) for
J and A€R has two linearly independent solutions u,,u, of the form

w(2n+s) = (Ha(/ )ﬂl (2n+s),

u(2n +s) “<Ha(]> f>(2n + )

for n=0, s=12 such that limg_ . f,(k)— Em(k) =0, m=1,2, with
{ﬁm(k)}kzl €l(R) being the 4-periodic sequence given by

~ _jo for k=2n+m-—1,
P (k) _{(—1)" for k =2n+m.

Moreover J is a purely point operator.
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Proof. Define A(n) := B(2n+ 1)B(2n) for n>1 (i.e. A(n) is given by (2.5) with
T = 2). We have A(n) = A(n) + Rap(n) + Rp(n) where

A(n) = —a(n) 0
0 —(an+ (A +2)7" )

0 Ab(2n)) ™! )

Ran) = (—xa(n)(b(zn +1)t o

R B 0 0
pln) = 0 2(b2nb2n+1)7" )

and by (2.22) and (2.3), for (2.4) all the assumptions of Theorem 1.3 are satisfied.
Thus, using (2.6) (which is valid for any weight sequence) with 7' = 2 we obtain two
linearly independent solutions of (2.1) of the form

1(2n+s) = (Ha@) 1(i:i8(2n+j)v1(n)> )
2

Jj=0

S(2n + ) (1:[ (a(j + 1) ( ]il>)1>(1)n1

s—1
B(2n+j)va(n )
Jj=0 2

for n=0, s = 1,2, where v,,(n) - e,. By (2.23) and (2.24) we have

/_\

12n+s) = (Ha(;) 1)"'81(5) + ¢, (2n + 5)),

uy(2n + 5) ( H a(j) ) —1)""'edy(s) + 92 (2n + 5)),

where ¢ is a non-zero constant, ¢,,(k)—0 and

—a, fors=1, 0 for s=1,
Si(s) = {0 52(S)={ |

for s =2, —a_, fors=2.

Observe, that for k = 2n+ s, with s = 1,2, n>0 we have (—1)""'9,,(s) = ¢, Bm(k)
(for B, defined as in the assertion of the theorem), for some non-zero constants
¢, m=1,2. This proves “the asymptotic part” of the theorem. To prove that J is
purely point we can proceed analogously to the proof of Theorem 2.2 for T' = 2L,
since for any A€ R one of the solutions uy, u; is in 112 (uy if lay, | <1, and uy if |ay | >1)
(and hence S,c = ¢, and A€ S, iff Leapy(J)). O
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Note, that Theorem 1.3 is the unique result of Section 1 which could be used
directly to study Eq.(2.4) (for A(n) defined in the above proof), since
{Rap(n)},= ¢! for 2#0. We could also try to use Theorem 1.5 with V(n) =
A(n) + Rap(n), but the condition {a(n)},-,eD" is necessary then.

Note also that the proof of the spectral part of Proposition 2.2 can be also
obtained by the use of some weaker estimates for the /> solution of the generalized
eigenequation. For instance, Freiman’s generalization of the Perron theorem for
discrete systems (see [8]) can be used there.
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