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Abstract

We consider two classes of Jacobi matrix operators in l2 with zero diagonals and with

weights of the form na þ cn for 0oap1 or of the form na þ cnna�1 for a41; where fcng is

periodic. We study spectral properties of these operators (especially for even periods), and we

find asymptotics of some of their generalized eigensolutions. This analysis is based on some

discrete versions of the Levinson theorem, which are also proved in the paper and may be of

independent interest.
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0. Introduction

It is well-known that for many types of operators their spectral properties are
tightly related to some properties of the so-called ‘‘generalized eigenvectors’’ (i.e.
solutions of an equation which is formally similar to the eigenequation, but these
solutions need not belong to the space on which the operator acts). In the case of
infinite Jacobi matrix operators the subordination theory of Khan and Pearson [14]
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is a significant example of the above relation. In these cases the generalized
eigenvectors are solutions of second-order linear difference equations.
The aim of this paper is to find asymptotics of these ‘‘generalized eigensolutions’’,

and to show some interesting spectral consequences of the asymptotic behaviour for
some classes of Jacobi matrices. This asymptotic and spectral analysis is provided in
Section 2. The main two classes studied here are Jacobi matrices with zero diagonals
and with weights being some perturbations of the sequence na:
In the first considered case 0oap1 and the perturbation is periodic. The most

interesting result is the appearance of the gap in the absolutely continuous spectrum
for the even period of the perturbation—this is a partial generalization of a result
from [16].
The second one is the case with a41 (rapidly increasing weights) and with the

perturbation of the form cnna�1; where fcng is an even-periodic sequence. Under
some extra assumptions we prove that the Jacobi operator is self-adjoint (which is
false for the unperturbed weights!) and has only purely point spectrum.
In this section, we also show an example of a Jacobi matrix with divergent

sequence of transfer matrices, which can be easily studied by asymptotic
methods.
Section 1 is devoted to some abstract results which are used as ‘‘technical

asymptotic tools’’ in Section 2. The basic result on asymptotic behaviour for
difference equations was initiated by Poincaré and later improved by Perron (see e.g.
[5,13]). The more subtle asymptotic behaviour of solutions of difference equations
is provided by the so-called discrete Levinson theorem (see [1] and the above
mentioned book [5] for details) being analogs of the Levinson theorem on
the asymptotic behaviour of solutions of some ordinary differential equations—see
[3]). The history of this kind of discrete asymptotic results is already long.
For instance, one of the first such results was published (without proof) by Evgrafov
[6], however, it contains some errors (see [1]). In Section 1 we also deal with
some discrete versions of the Levinson theorem for a system of d linear difference
equations. The main Lemma 1.1 is an analog of Levinson’s fundamental result
for the asymptotic integration of perturbations of diagonal differential systems
(see [3]). The difference between Theorem 1.1 and the corresponding results from
the literature (e.g. [1]) is that we formulate the assumptions guaranteeing the
existence of one solution with the special asymptotic behaviour, while in
the literature some assumptions, guaranteeing the existence of a base of such
solutions are the most frequently formulated ones. Moreover, some of our
assumptions have more general form. However, they are also more abstract, and
thus we formulate also some consequences of this theorem, which can by applied
more directly (Theorems 1.2–1.7). Especially, satisfactory results are obtained for
D1—diagonalizable systems (Theorem 1.4) and for d ¼ 2 (Theorems 1.6 and 1.7).
One of the obtained results is a discrete version of the Hartman–Winter theorem [7]
(Theorem 1.3).
The results of Section 2 illustrate the possibility of studying various families of

Jacobi matrices from a common perspective and, in our view, with simpler proofs.
Moreover, any new extension of the discrete Levinson-type theorem should allow to
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receive new applications to spectral analysis of Jacobi operators. We plan to study
such extensions in future.

Notation. The set of integers is denoted by Z; and N ¼ f1; 2; 3;yg: Let us fix dAN:
By MdðKÞ we denote the set of d � d matrices with entries in K for K ¼ C or R: We

fix an arbitrary norm jj 
 jj in Cd and we use the same symbol also for the induced

operator norm in MdðCÞ: For sAf1;y; dg the sth standard base vector of Cd is

denoted by es; if vACd ; then the sth coordinate of v is denoted by vs or ðvÞs; and

diagðvÞ or diagðv1;y; vdÞ is the diagonal matrix from MdðCÞ with v1;y; vd being the
successive diagonal entries. We shall use the following convention for products of

matrices (or numbers):
Ql

j¼k AðjÞ equals AðlÞ;y;AðkÞ if l4k; if l ¼ k it equals Ak;

and if lok it equals I (or 1).

For NAZ and for X ¼ K ; Kd or MdðKÞ we denote by lNðXÞ the set of all

sequences x ¼ fxðnÞgnXN with xðnÞAX : If xAlNðXÞ and p40; then xAl
p
NðXÞ iffPþN

n¼N jjxðnÞjjpoþN; and xAD1
NðX Þ iff

PþN

n¼N jjxðn þ 1Þ � xðnÞjjoþN; where in

the case X ¼ K we put jj 
 jj ¼ j 
 j: Moreover, lðXÞ ¼
S

NAZ lNðX Þ and similarly for

lpðXÞ and D1ðXÞ:We often omit ‘ðXÞ’ in all the above symbols when the choice of X

is clear (e.g. we write l
p
N ; D1; l). We use the symbol- to denote the convergence of a

sequence, and for a convergent x ¼ fxðnÞgAlðXÞ the symbol xN usually denotes the
limit of x (for matrix sequences the capitals are used, e.g. AðnÞ-AN). Observe that

all D1 sequences (also called bounded variation sequences) are convergent, and thus,

for instance, the symbol AN has sense for any fAðnÞgAD1ðMdðCÞÞ: The symbol
discr A denotes the discriminant of the characteristic polynomial of 2� 2 matrix A;

i.e., discr A ¼ ðtr AÞ2 � 4 detA:
For xAR the integer part of x is denoted by EntðxÞ; and the sign of x by sgnðxÞ

(i.e., sgnðxÞ ¼ x=jxj for xa0 and sgnð0Þ ¼ 0).

1. Asymptotic behaviour of solutions of discrete linear systems

Let fAðnÞgnXn0
AlðMdðCÞÞ; where n0AZ is fixed, and consider the equation

xðn þ 1Þ ¼ AðnÞxðnÞ for nXn0: ð1:1Þ

Any sequence x ¼ fxðnÞgnXn0
AlðCdÞ satisfying (1.1), is called a solution of (1.1). If

NXn0; and x0 ¼ fx0ðnÞgnXNAlðCdÞ satisfies x0ðn þ 1Þ ¼ AðnÞx0ðnÞ for nXN; then we

call x0 a solution of (1.1) for nXN: If we assume that

detAðnÞa0 for nXn0; ð1:2Þ

then the space of all the solutions of (1.1) is d-dimensional, and any solution x is

uniquely determined by the formula xðnÞ ¼
Qn�1

j¼n0
AðjÞxn0 ; nXn0; where xn0 is an

arbitrary vector from Cd : Unfortunately, this formula usually does not give any
direct asymptotic information about the solution.
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There are many results concerning various kinds of asymptotic behaviour
obtained for various assumptions on fAðnÞgnXn0

: The results presented here are

some discrete versions of the Levinson theorem (the analogs of the Levinson theorem
on the asymptotic behaviour of solutions of some ordinary differential equations—
see [3]).
Let us first precise what kinds of asymptotic behaviour will be considered here.

Definition 1.1. Let gAln0ðCÞ with gðnÞa0; and let x; vAln0ðCdÞ be such that xðnÞ ¼
gðnÞvðnÞ for nXn0: Then x

(a) has the weak asymptotics gðnÞ iff v is bounded and infnXn0 jjvðnÞjj40;
(b) has the asymptotics gðnÞvN iff vðnÞ-vN and vNa0:

We also use the standard notation: x is OðgðnÞÞ; when v is bounded for x; v and g
as above. Let us first consider the case of perturbed diagonal systems, that is assume
that

AðnÞ ¼ LðnÞ þ RðnÞ; nXn0; ð1:3Þ

where fLðnÞgnXn0
; fRðnÞgnXn0

AlðMdðCÞÞ and
LðnÞ ¼ diagðl1ðnÞ;y; ldðnÞÞ; lsðnÞa0; s ¼ 1;y; d; nXn0: ð1:4Þ

For s ¼ 1;y; d and n; n0
Xn0 define

jsðn; n0Þ ¼
Yn0
j¼n

lsðjÞ: ð1:5Þ

Let us denote by (DIAG) the assumptions and notations (1.2)–(1.5).
Observe, that in the case RðnÞ � 0 there exist solutions x1;y; xd of (1.1) given by

xsðnÞ ¼ jsðn0; n � 1Þes (and thus these solutions form a base of the space of all
solutions of (1.1)). In particular, xs has asymptotics jsðn0; n � 1Þes: The natural
question to ask is: what kind of more general assumptions can guarantee, at least
partially, the similar asymptotic behaviour of a solution? To answer this question we
first formulate a lemma. In the lemma we use N0AZ instead of n0; since we shall
chose appropriately large N0Xn0 later.
Denote Ps :¼ diagðesÞ; s ¼ 1;y; d: Let gAlN0

ðCÞ; gðnÞa0: Suppose that (DIAG)
holds with n0 ¼ N0 and define

asðnÞ ¼
Xn�1
j¼N0

jsðj þ 1; n � 1Þ
gðnÞðgðjÞÞ�1

�����
�����jjPsRðjÞjj; ð1:6Þ

bsðnÞ ¼
XþN

j¼n

gðjÞðgðnÞÞ�1

jsðn; jÞ

�����
�����jjPsRðjÞjj ð1:7Þ

for nXN0; s ¼ 1;y; d:
We start with the following general result concerning asymptotic formula of a

solution to (1.1).
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Lemma 1.1. Suppose that (DIAG) holds with n0 ¼ N0 and that

mAf1;y; dg; SCf1;y; dg are such that

sup
nXN0

X
sAS

asðnÞ þ
X
seS

bsðnÞ
 !

¼ c1o1 ð1:8Þ

and

sup
nXN0

jmðN0; n � 1Þ
gðnÞ

����
���� ¼ c2oþN: ð1:9Þ

Then Eq. (1.1) with n0 ¼ N0 has a non-zero solution x being OðgðnÞÞ: Moreover, this

solution has a form

xðnÞ ¼ gðnÞ jmðN0; n � 1Þ
gðnÞ em þ rðnÞ

	 

; nXN0; ð1:10Þ

where

jjrðnÞjjp
X
sAS

asðnÞ þ
X
seS

bsðnÞ
 !

c2jjemjj
1� c1

: ð1:11Þ

Proof. For n; n0XN0 define Fðn; n0Þ ¼
Qn0

j¼n LðjÞ: Let Xg ¼ fxAlN0
ðCdÞ: jjxjjgoþ

Ng; where jjxjjg ¼ supnXN0

jjxðnÞjj
jgðnÞj : For xAXg we put

ðKsxÞðnÞ ¼
Xn�1
j¼N0

FðN0; n � 1ÞFðN0; jÞ�1PsRðjÞxðjÞ

for sAS; nXN0 and similarly, for seS; nXN0

ðLsxÞðnÞ ¼
XþN

j¼n

FðN0; n � 1ÞFðN0; jÞ�1PsRðjÞxðjÞ:

Observe, that the series defining ðLsxÞðnÞ is convergent by (1.8). Moreover, we have

jjðKsxÞðnÞjj
jgðnÞj pasðnÞjjxjjg;

jjðLs0xÞðnÞjj
jgðnÞj pbs0 ðnÞjjxjjg ð1:12Þ

for sAS; s0eS: Thus Ks and Ls0 can be treated as a bounded linear endomorphism of
the Banach space ðXg; jj 
 jjgÞ: Define D :¼

P
sAS Ks �

P
seS Ls: By (1.12)

jjðDxÞðnÞjj
jgðnÞj p

X
sAS

asðnÞ þ
X
seS

bsðnÞ
 !

jjxjjg; ð1:13Þ

and therefore by (1.8) jjDjjgpc1; where jj 
 jjg is used also to denote the operator

norm induced by the norm jj 
 jjg in Xg: Let now bAlN0
ðCdÞ; bðnÞ ¼ jmðN0; n � 1Þem

for nXN0: By (1.9) bAXg and jjbjjgpc2jjemjj: Consider the equation for xAXg

ðI � DÞx ¼ b: ð1:14Þ
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Since jjDjjgpc1o1 this equation has a unique solution x ¼ ðI � DÞ�1b and xa0

since ba0: On the other hand, by the definitions of Ks and Ls; since FðN; jÞ and Ps

are diagonal (and thus they all commute) and since
Pd

s¼1 Ps ¼ IAMdðCÞ; a solution
of (1.14) is a solution of (1.1) for n0 ¼ N0: (Equality (1.14): x ¼ b þ Dx is a kind of
the variation of constants formula for (1.1): xðn þ 1Þ ¼ LðnÞxðnÞ þ RðnÞxðnÞ). The
solution x is OðgðnÞÞ since xAXg: Now taking rðnÞ ¼ gðnÞ�1ðDxÞðnÞ and using (1.13)

we obtain (1.11) since

jjxjjgpjjðI � DÞ�1jjgjjbjjgp
jjbjjg

1� jjDjjg
p

c2jjemjj
1� c1

: &

We shall use the above lemma to prove some results on existence of
solutions having asymptotics (in the sense of Definition 1.1) with the growth
jmðn0; n � 1Þ; i.e., with the growth of one of the solutions of the unperturbed system
(with RðnÞ � 0). Before we formulate the first theorem, let us note the following
simple fact.

Remark 1.1. Let N0Xn0: Suppose that (1.2) holds and that

flðnÞgnXn0
AlðCÞ; lðnÞa0: If x0AlN0

ðCdÞ of the form x0ðnÞ ¼ ð
Qn�1

j¼N0
lðjÞÞv0ðnÞ is a

solution of (1.1) for nXN0; then there exists a solution xAln0ðCdÞ of (1.1) having the
form xðnÞ ¼ ð

Qn�1
j¼n0

lðjÞÞvðnÞ; with vðnÞ ¼ v0ðnÞ for nXN0:

Assume (DIAG) and for nXN0Xn0; m; sAf1;y; dg define

amsðN0; nÞ ¼
Xn�1
j¼N0

jsðj; n � 1Þ
jmðj; n � 1Þ

����
����jjPsRðjÞjj

jlsðjÞj
; ð1:15Þ

bmsðnÞ ¼
XþN

j¼n

jmðn; j � 1Þ
jsðn; j � 1Þ

����
����jjPsRðjÞjj

jlsðjÞj
: ð1:16Þ

Theorem 1.1. Assume (DIAG) and let mAf1;y; dg; SCf1;y; dg; and N0Xn0:

(a) If

sup
nXN0

X
sAS

amsðN0; nÞ þ
X
seS

bmsðnÞ
 !

¼ co1; ð1:17Þ

then Eq. (1.1) has a non-zero solution x being Oðjmðn0; n � 1ÞÞ: If moreover co1
2
;

then x has the weak asymptotics jmðn0; n � 1Þ:
(b) If

8sAS lim
n-þN

amsðN0; nÞ ¼ 0 and 8seS lim
n-þN

bmsðnÞ ¼ 0; ð1:18Þ

then Eq. (1.1) has a solution with the asymptotics jmðn0; n � 1Þem:
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Proof. To prove version (a) we can apply Lemma 1.1 with gðnÞ ¼ jmðN0; n � 1Þ;
since then asðnÞ ¼ amsðN0; nÞ; bsðnÞ ¼ bmsðnÞ for nXN0 and c1 ¼ c; c2 ¼ 1: Thus
using Remark 1.1, we obtain the existence of a non-zero Oðjmðn0; n � 1ÞÞ solution x

such that xðnÞ ¼ jmðn0; n � 1ÞvðnÞ for nXn0; where vðnÞ ¼ em þ rðnÞ with

jjrðnÞjjpcjjemjj
1�c

for nXN0 due to (1.10) and (1.11). But if co1
2
; then c

1�c
o1; and thus

x has the weak asymptotics jmðn0; n � 1Þ: To prove version (b) observe first that
from (1.18) and from the fact that

amsðN 0
0; nÞpamsðN0; nÞ for nXN 0

0XN0 ð1:19Þ

it follows that (1.17) holds with cp1
7
and with some N 0

0XN0 in the place of N0: Thus

proceeding as in the proof of the version (a), we find a solution x such that xðnÞ ¼
jmðn0; n � 1Þðem þ rðnÞÞ; where jjrðnÞjjp7

6
jjemjjð

P
sAS amsðN0; nÞ þ

P
seS bmsðnÞÞ for

nXN 0
0 due to (1.11) and (1.19). Therefore, rðnÞ-0 by (1.18) and hence x has the

asymptotics jmðn0; n � 1Þem: &

The proofs of the discrete Levinson theorems from [1,5], as well as the proof of
their primary continuous version [3] are based on the variation of constants formula
and on the method of successive approximation, which is in fact similar to the
inversion of the ðI � DÞ operator used here.
As an illustration of the above considerations let us show that Benzaid–Lutz

theorem (see [1,5]) can be easily proved by the use of Theorem 1.1.

Theorem 1.2. Assume (DIAG) and for s; tAf1;y; dg set

Cst ¼ sup
n;n0Xn0

jsðn; n0Þ
jtðn; n0Þ

����
����: ð1:20Þ

Suppose that for any s; tAf1;y; dg either

lim
n-þN

jsðn0; nÞ
jtðn0; nÞ

����
���� ¼ 0 and CstoþN ð1:21Þ

or

CtsoþN: ð1:22Þ

If for any sAf1;y; dg
XþN

j¼n0

jjRðjÞjj
jlsðjÞj

oþN; ð1:23Þ

then there exists a base x1;y; xd of the space of solutions of (1.1) such that xm has the

asymptotics jmðn0; n � 1Þem for m ¼ 1;y; d:

Proof. Let us fix mAf1;y; dg and choose N0 ¼ n0 and S :¼ fsAf1;y; dg:
Eq. (1.21) holds with t ¼ mg: Thus if seS then CmsoþN; and limn-þN bmsðnÞ ¼
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0 due to (1.23). Let sAS and define

f ½s�
n ðjÞ ¼ wnðjÞ

jsðn0; n � 1Þ
jmðn0; n � 1Þ

����
���� jmðn0; j � 1Þ
jsðn0; j � 1Þ

����
����jjPsRðjÞjj

jlsðjÞj

for n; jXn0; where wnð
Þ is the characteristic function of the set fn0;y; n � 1g: By
(1.21) limn-þN f

½s�
n ðjÞ ¼ 0 for any jXn0: Moreover,

f ½s�
n ðjÞp jsðj; n � 1Þ

jmðj; n � 1Þ

����
����jjPsRðjÞjj

jlsðjÞj
pCsm

jjRðjÞjj
jlsðjÞj

for n; jXn0: Thus, using the Lebesgue theorem on majorated convergence we obtain

limn-þN am;sðn0; nÞ ¼ 0; since am;sðn0; nÞ ¼
PþN

j¼n0
f
½s�

n ðjÞ: Therefore, by Theorem 1.1,

there exists a solution xm with the asymptotics jmðn0; n � 1Þem: Now x1;y; xd is a
basis, since the system e1;y; ed and thus also x1ðnÞ;y; xdðnÞ for large n are linearly
independent. &

The typical situation when the assumptions of the above theorem are satisfied is
the simple modulus limit case, that is the case when (assuming (DIAG))

LðnÞ-LN ¼ diagðl1N;y; ldNÞ

with jltNjajlsNj for sat; ltNa0; s; t ¼ 1;y; d ð1:24Þ

and

fRðnÞgnXn0
Al1: ð1:25Þ

The following two-dimensional result can be immediately obtained from the above
theorem.

Corollary 1.1. Let d ¼ 2: Assume (DIAG) and (1.23) for s ¼ 1 or 2. If there exist

0od;MoþN such that

8n;n0Xn0 dp
j1ðn; n0Þ
j2ðn; n0Þ

����
����pM;

then the assertion of Theorem 1.2 holds.

The finishing perturbed diagonal system result considered here may be treated as a
discrete version of the Hartman–Winter theorem [7]. It refers again to the case d ¼ 2
with the weaker then (1.25) assumption on the perturbation. A more general discrete
analogue of the Hartman–Winter theorem was also given by Benzaid–Lutz [1,
Corollary 3.4]. For the reader’s convenience we present our version together with its
simple proof.
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Theorem 1.3. Let d ¼ 2: Assume (DIAG) and (1.24). Suppose that RðnÞ ¼ RDðnÞ þ
RADðnÞ; where

RDðnÞ ¼
r11ðnÞ; 0

0; r22ðnÞ

 !
; RADðnÞ ¼

0; r12ðnÞ
r21ðnÞ; 0

 !
;

and fRADðnÞgnXn0
Al2; fRDðnÞgnXn0

Al1: Then there exists a base x1; x2 of the space of

solutions of (1.1) such that xm has the asymptotics jmðn0; n � 1Þem for m ¼ 1; 2:

To prove this theorem we need the following lemma.

Lemma 1.2. Suppose that fbðnÞgnXNAlpðCÞ; where pX1; and

faðnÞgnXNAlðCÞ; aðnÞ-aN with jaNja1; aðnÞa0: Then the equation

uðn þ 1Þ ¼ aðnÞuðnÞ þ bðnÞ; nXN ð1:26Þ

has a solution u ¼ fuðnÞgnXNAlpðCÞ:

Proof. Suppose first that jaNj41 and observe that u given by

uðnÞ :¼ �
XþN

k¼n

bðkÞ
Yk

s¼n

aðsÞ
 !�1

; nXN

is a well-defined solution of (1.26). Choose 0oao1 and N0XN such that jaðnÞj�1pa
for nXN0; and define two sequences on Z

b̃ðnÞ :¼
0 for noN0;

jbðnÞj for nXN0;

(
*aðnÞ :¼

a�n for np0;

0 for n40:

(

We have juðnÞjpðb̃* *aÞðnÞ for nXN0 and thus, by Young’s inequality, uAlpðCÞ since
*a is an l1 sequence on Z: Now suppose that jaNjo1 and consider u defined by

uðnÞ :¼
Xn�1
k¼N0

bðkÞ
Yn�1

s¼kþ1
aðsÞ; nXN0;

where N0XN; 0oao1 and jaðnÞjpa for nXN0: This is an lp solution of (1.26) for

nXN0; since similarly to the first case we have juðn þ 1Þjpðb̃* **aÞðnÞ for nXN0; where

**aðnÞ :¼
an for nX0;

0 for no0: &

(

Proof of Theorem 1.3. We apply here the idea of Harris–Lutz method (see [9]).

Suppose that fQðnÞgnXn0
Al2ðM2ðCÞÞ; QðnÞ ¼ 0; q1ðnÞ

q2ðnÞ; 0

� 

: Then there exists

NXn0 such that ðI þ QðnÞÞ�1 ¼ ð1þ eðnÞÞðI � QðnÞÞ for nXN; where feðnÞgnXNAl1:

Let x ¼ fxðnÞgnXNAlðC2Þ and define z ¼ fzðnÞgnXN by the formula zðnÞ ¼ ðI þ
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QðnÞÞ�1xðnÞ: Thus x is a solution of (1.1) for nXN iff z is a solution of the equation

zðn þ 1Þ ¼ ½LðnÞ þ S0ðnÞ þ S00ðnÞ�zðnÞ; nXN; ð1:27Þ

where fS00ðnÞgnXNAl1ðM2ðCÞÞ and

S0ðnÞ ¼ LðnÞQðnÞ � Qðn þ 1ÞLðnÞ þ RADðnÞ: ð1:28Þ

Assume that we have chosen fQðnÞgnXN such that S0ðnÞ ¼ 0 for all nXN: Then

Eq. (1.27) has a form satisfying the assumptions (DIAG), (1.24) and (1.25), and
consequently, by Theorem 1.2 this equation has a base z1; z2 of the space of solutions
of this equations, such that zm has the asymptotics jmðn0; n � 1Þem for m ¼ 1; 2:
Hence, the same is true for Eq. (1.1), because we can take x1; x2 defined by xmðnÞ ¼
ðI þ QðnÞÞzmðnÞ; m ¼ 1; 2; as the base for nXN and then we can use Remark 1.1 to
extrapolate this base for nXn0: It remains to prove that there exists some fQðnÞgnXn0

satisfying the above conditions. Observe that the condition S0ðnÞ � 0 can be written
in the form of two independent scalar equations for fq1ðnÞgnXN and fq2ðnÞgnXN :

q1ðn þ 1Þ ¼ l1ðnÞ
l2ðnÞ

q1ðnÞ þ r12ðnÞ; q2ðn þ 1Þ ¼ l2ðnÞ
l1ðnÞ

q2ðnÞ þ r21ðnÞ;

nXN: But by Lemma 1.2 the both equations have solutions in l2: &

We shall consider now the more general case when the unperturbed system is not
necessarily diagonal. Thus, in the place of (1.3) we assume that

AðnÞ ¼ VðnÞ þ RðnÞ; nXn0; ð1:29Þ

where fVðnÞgnXn0
; fRðnÞgnXn0

AlðMdðCÞÞ: The diagonality of fVðnÞgnXN will be

replaced by a weaker assumption, namely, by D1-diagonalizability.

Definition 1.2. Suppose that fVðnÞgnXn0
; fLðnÞgnXn0

AlðMdðCÞÞ and that all LðnÞ are
diagonal. Then fVðnÞgnXn0

is D1-diagonalizable to fLðnÞgnXn0
iff there exist n1Xn0

and fTðnÞgnXn1
AD1ðMdðCÞÞ such that det TNa0; and for nXn1

VðnÞ ¼ TðnÞLðnÞðTðnÞÞ�1: ð1:30Þ

Moreover, if the above holds, then TN is called a diagonalizing limit.

Observe that in this definition LðnÞ has to be a diagonal form of VðnÞ only for
large n: Observe also that the existence of the limit TN follows from the assumption

fTðnÞgnXn1
AD1:

Let us denote by (D1-DIAG) the following assumptions and notations: (1.2) and

(1.29), fVðnÞgnXn0
is D1-diagonalizable to fLðnÞgnXn0

with a diagonalizing limit TN;

(1.4) and (1.5).

We can formulate now the main theorem for D1-diagonalizable case using
assumptions of the form similar to these used in Benzaid–Lutz theorem.
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Theorem 1.4. Assume that (D1-DIAG) holds, and that for some mAf1;y; dg there

exists SCf1;y; dg such that

8sAS lim
n-þN

jsðn0; nÞ
jmðn0; nÞ

����
���� ¼ 0 and CsmoþN ð1:31Þ

and

8seSCmsoþN; ð1:32Þ
where Cst is defined by (1.20). If for any s; tAf1;y; dg

sup
nXn0

lsðnÞ
ltðnÞ

����
����oþN ð1:33Þ

and XþN

j¼n0

jjRðjÞjj
jlmðjÞj

oþN; ð1:34Þ

then Eq. (1.1) has a solution with the asymptotics jmðn0; n � 1ÞTNem:

Proof. Suppose that (1.30) holds for nXNXn0: Let x ¼ fxðnÞgnXNAlðCdÞ and

define z ¼ fzðnÞgnXN by zðnÞ ¼ ðTðnÞÞ�1xðnÞ: Thus x is a solution of (1.1) for nXN

iff z is a solution of the equation

zðn þ 1Þ ¼ ðLðnÞ þ R0ðnÞÞzðnÞ; nXN; ð1:35Þ
where

R0ðnÞ ¼ ðTðnÞÞ�1RðnÞTðnÞ þ SðnÞðVðnÞ þ RðnÞÞTðnÞ

with SðnÞ ¼ ðTðn þ 1ÞÞ�1 � ðTðnÞÞ�1: We have fðTðnÞÞ�1gnXNAD1; because

det TNa0; and thus fSðnÞgnXNAl1: By (1.33) and (1.30) for any

sAf1;y; dg; nXN we obtain

jjR0ðnÞjj
jlsðnÞj

pK1
jjRðnÞjj
jlmðnÞj

þ K2jjSðnÞjj
jjVðnÞjj
jlmðnÞj

þ jjRðnÞjj
jlmðnÞj

� 


pK3
jjRðnÞjj
jlmðnÞj

þ K4jjSðnÞjj diag
l1ðnÞ
lmðnÞ

;y;
ldðnÞ
lmðnÞ

� 
����
����

����
����

pK5
jjRðnÞjj
jlmðnÞj

þ jjSðnÞjj
� 


for some constants K1;y;K5: Hence by (1.34)
PþN

nXN
jjR0ðnÞjj
jlsðnÞj oþN; for any s: Now

by (1.31) and (1.32), using exactly the same arguments as in the proof of Theorem 1.2
we can check that Eq. (1.35) has a form satisfying the assumptions of Theorem 1.1(b)
(with N instead of n0 and N0 ¼ N). Thus this equation has a solution z with the
asymptotics jmðn0; n � 1Þem: To finish the proof it is enough to use TðnÞ-TN and
Remark 1.1. &

A simple consequence of Theorem 1.4 is the following result.
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Corollary 1.2. Assume that (D1-DIAG) holds. Suppose that mAf1;y; dg is such that

(n1Xn0; d40 8sam; nXn1 dp
lmðnÞ
lsðnÞ

����
����p1; ð1:36Þ

and that (1.34) holds. Then Eq. (1.1) has a solution with the asymptotics

jmðn0; n � 1ÞTNem:

Proof. We can apply Theorem 1.4 taking S :¼ f: &

The remaining part of this section consists of various consequences of Theorem
1.4 which are important for studies of difference operators, especially of Jacobi
operators. The first theorem given below could be treated as the discretization of the
differential Levinson theorem [3, Theorem 8.1], but assumption (iii) has the form
which is rather similar to the main assumption of the Poincaré and Perron theorems.
Although Theorem 1.5 will not be applied in the present paper, it is stated and
proved here due to its usefulness in spectral analysis of some Jacobi operators, see
[11,12]. This result was already formulated by Janas and Naboko [11] (for d ¼ 2 and
without proof; the similar result has been also formulated before by Evgrafov [6], but
his formulation contains serious mistakes—see [1, Section 4]). Our formulation
seems to be a new result, though it is similar to a result from [1].

Theorem 1.5. Assume that AðnÞ has form (1.29) and that following conditions are

satisfied:

(i) detAðnÞ; det VðnÞa0 for nXn0;
(ii) fVðnÞgnXn0

AD1;

(iii) limn-þN VðnÞ ¼: VN has d non-zero eigenvalues l1N;y; ldN having distinct

absolute values,
(iv) fRðnÞgnXn0

Al1:

Then there exists a base x1;y; xd of the space of solutions of (1.1) such that xm has

the asymptotics ð
Qn�1

j¼n0
lmðjÞÞvmN; where lmðnÞ-lmN; lmðnÞ is an eigenvalue of

VðnÞ; and vmN is an eigenvector of VN for lmN; for m ¼ 1;y; d:

We need the following D1-diagonalizability criterion (also being a discrete version
of a result from [3]) to prove this theorem.

Lemma 1.3. Suppose that fVðnÞgnXn0
AD1ðMdðCÞÞ and limn-þN VðnÞ ¼: VN has d

distinct eigenvalues l1N;y; ldN: Let for m ¼ 1;y; d flmðnÞgnXn0
be such that lmðnÞ

is an eigenvalue of VðnÞ and lmðnÞ-lmN: Define LðnÞ :¼ diagðl1ðnÞy; ldðnÞÞ and

LN :¼ diagðl1Ny; ldNÞ: Then fVðnÞgnXn0
is D1-diagonalizable to fLðnÞgnXn0

with a

diagonalizing limit TN such that VN ¼ TNLNT�1
N

:

The proof of this lemma follows immediately from [10, Lemma 1.7].
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Note that the sequences flmðnÞgnXn0
from the lemma exist and are unique for large

n (i.e. two sequences of eigenvalues of VðnÞ with the same limit lmN have to be equal
for n large enough).

Proof of Theorem 1.5. Define LðnÞ and LN as in the lemma. Thus all the

assumptions of (D1-DIAG) are satisfied. Let mAf1;y; dg and set S ¼
fsAf1;y; dg: jlsNjojlmNjg: Condition (1.31) holds since LðnÞ-LN: If seS then
for s ¼ m we have Cms ¼ 1; and for sam we have jlsNj4jlmNj by (iii), which gives
CmsoþN: Thus (1.32) holds and (1.33) and (1.34) are obvious, since lsNa0 for
any s and (iv) holds. Hence, by Theorem 1.4, for any m Eq. (1.1) has a solution xm

with the asymptotics ð
Qn�1

j¼n0
lmðjÞÞvmN; where vmN ¼ TNema0; and by Lemma 1.3

VNvmN ¼ TNLNem ¼ lmNvmN: &

The most important in Theorem 1.5 were the assumptions that

fVðnÞgnXn0
AD1; fRðnÞgnXn0

Al1 and that the eigenvalues of VN have distinct

absolute values. Below we show some new two-dimensional results for the cases
when the eigenvalues of VN may have equal absolute values. Nevertheless, all these
results refer to the case when VN is diagonalizable. In the first result this
diagonalizability follows from the condition discr VNo0; and the eigenvalues are
distinct, but have the same absolute value since VN is real.

Theorem 1.6. Let d ¼ 2: Assume (1.29) and conditions (i), (ii), (iv) of Theorem 1.5. If

VðnÞAM2ðRÞ for nXn0 and discr VNo0; where VN :¼ limn-þN VðnÞ; then the

assertion of Theorem 1.5 holds.

Proof. Observe first that the condition VNAM2ðRÞ and discr VNo0 follow that

l2N ¼ %l1NeR: Thus l1Nal2N and the assumptions of Lemma 1.3 are satisfied.
Moreover, discr VðnÞo0 for large n; which gives jl1ðnÞj ¼ jl2ðnÞj: Hence for any
mAf1; 2g condition (1.36) holds. Condition (1.34) also holds, because lmNa0 and

fRðnÞgnXn0
Al1: Hence the assertion follows immediately from Corollary 1.2. &

Note that if we assume in the above theorem that discr VN40 (instead of
discr VNo0), then Theorem 1.5 can usually be used.
In the last theorem we investigate two cases when VN ¼ aI :

Theorem 1.7. Let d ¼ 2: Assume (1.29) with detAðnÞ; det VðnÞa0 for nXn0; and

suppose that VðnÞ has the form

VðnÞ ¼ aðnÞI þ pðnÞSðnÞ; nXn0; ð1:37Þ

where

(i) fSðnÞgnXn0
AD1ðM2ðRÞÞ;

(ii) faðnÞgnXn0
; fpðnÞgnXn0

AlðRÞ; aðnÞ-aNa0; pðnÞ-0;

(iii) fRðnÞgnXn0
Al1ðM2ðCÞ:
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Let SN :¼ limn-þN SðnÞ and consider two cases:

(a) discr SNo0; (b) discr SN40 and sgnðpðnÞÞ is constant and non-zero,

and denote by m1N; m2N the eigenvalues of SN; where in case (b) sgnðpðnÞ
aN

Þðm2N �
m1NÞ40: For Eq. (1.1) there exists

3 a base x1; x2 of the space of solutions in case (a)
3 a non-zero solution x1 in case (b)

such that xm has the asymptotics

Yn�1
j¼n0

ðaðjÞ þ pðjÞmmðjÞÞ
 !

smN

for (a) m ¼ 1; 2; for (b) m ¼ 1; where mmðnÞ-mmN
; mmðnÞ is an eigenvalue of SðnÞ;

and smN is an eigenvector of SN for mmN
:

Proof. In the both cases (a) and (b) m1Nam2N: Thus, we can apply Lemma 1.3 for

fSðnÞgnXn0
and using (1.37) we conclude that fVðnÞgnXn0

is D1-diagonalizable to

fLðnÞgnXn0
; where LðnÞ ¼ diagðl1ðnÞ; l2ðnÞÞ with lmðnÞ ¼ aðnÞ þ pðnÞmmðnÞ; with a

diagonalizing limit TN such that SN ¼ TNdiagðm1N; m2NÞT�1
N

: We shall use now

Corollary 1.2. By (ii) and (iii) (1.34) holds. In case (a) we obtain (1.36) for any choice

of mAf1; 2g since l1ðnÞ ¼ l1ðnÞ for large n (because aðnÞ; pðnÞAR). In case (b) for

m ¼ 1 (1.36) holds, since by (ii)
l1ðnÞ
l2ðnÞ-1 (lsðnÞa0 since it is an eigenvalue of VðnÞ

and det VðnÞa0) and for s :¼ sgnðpðnÞ
aN

Þ; and for n large enough

jl1ðnÞj ¼ jaðnÞj 1þ pðnÞ
aðnÞ

����
����sm1ðnÞ

� 

pjaðnÞj 1þ pðnÞ

aðnÞ

����
����sm2ðnÞ

� 

¼ jl2ðnÞj: &

2. Applications to Jacobi matrices

In this section, we consider some infinite Jacobi matrices of the form

0 bð1Þ
bð1Þ 0 bð2Þ

bð2Þ 0 bð3Þ
bð3Þ 0 &

& &

0
BBBBBB@

1
CCCCCCA
;

where fbðnÞgnX1 has non-zero real terms (the so-called weights). We also consider

corresponding operators J acting in the Hilbert space l21 ¼ l21ðCÞ given by

Ju ¼ Ju
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for u from the maximal domain DðJÞ ¼ fuAl21 : JuAl21g; where

ðJuÞðnÞ ¼ bðn � 1Þuðn � 1Þ þ bðnÞuðn þ 1Þ; nAN

with the convention that bðjÞ; uðjÞ ¼ 0 for jo1:
Let lAR: The equation

ðJuÞðnÞ ¼ luðnÞ; nX2 ð2:1Þ

for a complex sequence u ¼ fuðnÞgnX1 we call the generalized eigenequation for J and

l. Note that this equation is ‘‘generalized’’ because we do not assume that uAl21 ; and
also because we omit n ¼ 1 in (2.1) (and thus usually a solution u is not an

eigenvector of J; even when uAl21 ). Observe that the generalized eigenequation is a

scalar second-order linear difference equation. It can be written in the equivalent C2

vector form of (1.1) type

ũðn þ 1Þ ¼ BðnÞũðnÞ; nX2; ð2:2Þ

where ũðnÞ ¼ ðuðn�1Þ
uðnÞ ÞAC2; and BðnÞAM2ðRÞ are transfer matrices,

BðnÞ ¼
0 1

�bðn � 1Þ
bðnÞ

l
bðnÞ

0
B@

1
CA: ð2:3Þ

As we shall see, in the first two subsections of this section the transfer matrix
sequence is convergent to E; which is given by

E ¼
0 1

�1 0

 !
;

and in the last one it is divergent. Our aim is to study the asymptotic behaviour of
some solutions of the generalized eigenequation for J and lAR; for some examples
of J: In these examples the transfer matrices do not behave regularly enough to use
the theory developed in the previous section directly for Eq. (2.2). Thus we consider
the equation

xðn þ 1Þ ¼ AðnÞxðnÞ; nX1 ð2:4Þ

for x ¼ fxðnÞgnX1AlðC2Þ; where

AðnÞ ¼
YT�1

j¼0
BðnT þ jÞ; ð2:5Þ

and T is a certain natural number. Observe, that for any solution x of (2.4) there
exists a unique solution u of the generalized eigenequation for J and l satisfying
ũðnTÞ ¼ xðnÞ for nX1: Moreover, the correspondence ‘‘x*u’’ is a linear
isomorphism of the space of solution of (2.4) to the space of solutions of (2.1),
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and we have

uðnT þ sÞ ¼
Ys�1
j¼0

BðnT þ jÞxðnÞ
 !

2

for nX1; sX0: ð2:6Þ

We shall use the following spectral terminology. If H is a self-adjoint operator
in a Hilbert space, then HacðHÞ; HscðHÞ; HppðHÞ are the space of

absolute continuity, of singular continuity, and the pure point space for H

(i.e. the closure of the space spanned by all the eigenvectors for H), respectively;
for a Borel subset GCR; HGðHÞ is the range of the spectral projection for H and G;
and sacðHÞ; sppðHÞ; sscðHÞ are the absolutely continuous, point, and the

singular continuous spectrum of H; respectively. We say that H is absolutely

continuous (purely point) in G iff HGðHÞCHacðHÞ ðHppðHÞÞ; and we omit ‘‘in G’’

for G ¼ R:

2.1. A class of Jacobi matrices with periodically perturbed weights

In this subsection, the weight sequence is a periodic perturbation of the sequence
na; i.e.,

bðnÞ ¼ na þ cðnÞ; nX1; ð2:7Þ

where aAð0; 1� and c ¼ fcðnÞgnAZ is a T-periodic real sequence, with a period TX2;
and na þ cðnÞa0 for nX1: Since such weight sequence satisfies the Carleman
condition, J is an unbounded self-adjoint operator (see e.g. [2]). We use here
different methods for T ¼ 2L and for T ¼ 2L þ 1 (with LAN). To study Eq. (2.4) we

shall apply Theorems 1.7 and 1.6. It is convenient to introduce first a subclass of D1;
consisting of sequences with a special kind of asymptotics. Assume here that NAZ;

and X ¼ R;C;Cd or MdðCÞ:

Definition 2.1. Let xAlNðX Þ: Then xAD
1*
N ðX Þ iff there exist

xNAX ; gAð0; 1�; aAD1
NðX Þ and rAl1NðX Þ such that for nXN

xðnÞ ¼ xN þ n�gaðnÞ þ rðnÞ: ð2:8Þ

We also set D1* ðXÞ :¼
S

NAZ D
1*
N ðXÞ; and we use the symbols D

1*
N and D1* when

the choice of X is obvious. Let xAlðX Þ; xN; aNAX ; gAð0; 1�: We write

xðnÞExN þ n�gaN ð2:9Þ

iff there exist aAD1ðX Þ; rAl1ðXÞ such that (2.8) holds for large n and aðnÞ-aN

(thus x must be in D1* ðX Þ in this case).

Note that xN; g and aN in (2.9) are not uniquely determined, but if (2.9) holds and
at the same time

xðnÞEx0
N

þ n�g0a0
N
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with aN; a0
N
a0; then x0

N
¼ xN; a0

N
¼ aN; and g0 ¼ g: We shall use the following

technical lemma.

Lemma 2.1. (a) D
1*
N ðXÞ is a subalgebra of D1

NðXÞ: Moreover, if x0ðnÞEx0
N

þ
n�g0a0

N
; x00ðnÞEx00

N
þ n�g00a00

N
then ðx0x00ÞðnÞEx0

N
x00
N

þ n�gaN; where g ¼
minðg0; g00Þ;

aN ¼
a0
N

x00
N

for g0og00;

a0
N

x00
N

þ x0
N

a00
N

for g0 ¼ g00;

x0
N

a00
N

for g04g00:

8><
>:

(b) Suppose that xAD1* ðRÞ; xðnÞExN þ n�gaN; and yðnÞ ¼ f ðxðnÞÞ for large n;

where f is a real Cm function in a neighbourhood of xN; with m4g�1: Then

yðnÞEf ðxNÞ þ n�gf ð1ÞðxNÞaN:

Proof. Condition (a) is immediate. To prove (b) we use Taylor’s formula

f ðxN þ tÞ ¼
Xm�1

j¼0

f ðjÞðxNÞ
j!

tj þ RðtÞ; RðtÞ ¼ OðtmÞ; t-0

(note, that mX2 since gp1), and for large n we obtain

yðnÞ ¼ f ðxN þ n�gaðnÞ þ rðnÞÞ

¼
Xm�1

j¼0

f ðjÞðxNÞ
j!

Xj

s¼0

j

s

 !
n�sgðaðnÞÞsðrðnÞÞj�s þ r1ðnÞ

¼
Xm�1

j¼0

f ðjÞðxNÞ
j!

n�jgðaðnÞÞj þ r2ðnÞ ¼ f ðxNÞ

þ n�g f ð1ÞðxNÞaðnÞ þ
Xm�1

j¼2

f ðjÞðxNÞ
j!

n�ðj�1ÞgðaðnÞÞj

" #
þ r2ðnÞ;

where aAD1; r; r1; r2Al1: Thus, since D1 is an algebra, we obtain the assertion of
(b). &

Now define

sa ¼
0 for aAð0; 1Þ;
1
2

for a ¼ 1:

(

We can prove the following result on asymptotic behaviour of the sequence
fAðnÞgnX1 given by (2.5).
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Proposition 2.1. AðnÞEAN þ n�aCl; where

AN ¼
ð�1ÞL

I for T ¼ 2L;

ð�1ÞL
E for T ¼ 2L þ 1;

(

Cl ¼

ð�1ÞL

Ta

�rþ Tsa �Ll

Ll rþ Tsa

 !
for T ¼ 2L;

ð�1ÞL

Ta

Ll rþ 2Lsa
r� 2ðL þ 1Þsa ðL þ 1Þl

 !
for T ¼ 2L þ 1

8>>>>><
>>>>>:

with

r ¼
X2L�1

j¼0
ð�1Þj

cðjÞ for L ¼ EntðT=2Þ: ð2:10Þ

Proof. By (2.3), BðnT þ jÞ ¼ E þ 0 0
ejðnÞ rjðnÞ

� 

with

ejðnÞ ¼ 1� 1þ j � 1

nT

� 
a

þcðj � 1Þ
ðnTÞa

� 

ð1þ j

nT
Þa þ cðjÞ

ðnTÞa
� 
�1

;

rjðnÞ ¼
l

ðnTÞa 1þ j

nT

� 
a

þ cðjÞ
ðnTÞa

� 
�1
:

Using Lemma 2.1 we obtain ejðnÞE0þ n�afj; where

fj ¼ T�aðcðjÞ � cðj � 1ÞÞ þ
0 for aAð0; 1Þ;
T�1 for a ¼ 1;

(
ð2:11Þ

and rjðnÞE0þ n�a l
Ta: Thus

BðnT þ jÞEE þ n�a 0 0

fj
l

Ta

 !
;

and by Lemma 2.1(a) and (2.5) AðnÞEET þ n�aC̃l; where

C̃l ¼
XT�1

j¼0
ET�1�j

0 0

fj

l
Ta

0
@

1
AEj:

We also have E2u ¼ ð�1Þu
I ; E2u�1 ¼ ð�1Þu�1

E and

E
0 0

a b

 !
¼

a b

0 0

 !
;

0 0

a b

 !
; E ¼

0 0

�b a

 !
;
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hence for T ¼ 2L; using (2.11), we can compute

C̃l ¼
XL�1
u¼0

E2L�1�2u
0 0

f2u

l
Ta

0
@

1
AE2u þ

XL

u¼1
E2L�2u

0 0

f2u�1
l

Ta

0
@

1
AE2u�1

¼ð�1ÞL�1 XL�1
u¼0

f2u

l
Ta

0 0

0
@

1
Aþ

XL

u¼1

0 0

� l
Ta f2u�1

0
@

1
A

2
4

3
5

¼ð�1ÞL�1

PL
u¼1 f2u

Ll
Ta

�Ll
Ta

PL
u¼1 f2u�1

0
BB@

1
CCA ¼ Cl:

Similarly, for T ¼ 2L þ 1

C̃l ¼
XL

u¼0
E2L�2u

0 0

f2u

l
Ta

0
@

1
AE2u þ

XL

u¼1
E2L�2uþ1

0 0

f2u�1
l

Ta

0
@

1
AE2u�1

¼ð�1ÞL
XL

u¼0

0 0

f2u

l
Ta

0
@

1
Aþ

XL

u¼1

l
Ta; �f2u�1

0 0

0
@

1
A

2
4

3
5 ¼ Cl: &

Having the above result, we are ready to formulate and prove the theorem on
asymptotic behaviour of generalized eigensolutions for J:

Theorem 2.1. Consider the generalized eigenequation (2.1) for J determined by (2.7)
and for lAR in the following three cases:

(i) T ¼ 2L þ 1;
(ii) T ¼ 2L and jlj4jrj

L
;

(iii) T ¼ 2L and jljojrj
L
;

where r is given by (2.10). For the equation there exists:

– a base u1; u2 of the space of solutions in cases (i) and (ii),
– a non-zero solution u1 in case (iii)

of the form

umðnT þ sÞ ¼
Yn�1
j¼1

ð1þ j�aZmðjÞÞ
 !

bmðnT þ sÞ; ð2:12Þ

nX0; s ¼ 1;y;T (m ¼ 1; 2 for (i) and (ii), and m ¼ 1 for (iii)), where

fZmðnÞgnX1; fbmðkÞgkX1AlðCÞ are such that ZmðnÞ-ZmN
; and limk-þN bmðkÞ �

*bmðkÞ ¼ 0; with ZmN
and with a 4-periodic sequence f *bmðkÞgkX1AlðCÞ defined by the

following formulas:
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for (i)

ZmN
¼ 1

2
ð�1Þmþ1

iT1�alþ sa; *bmðkÞ ¼ ðð�1Þm
iÞk;

for (ii)

ZmN
¼ ð�1ÞmþL

iT�a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2l2 � r2

q
þ sa;

*bmðkÞ ¼
ð�1Þt

dm for k ¼ 2t;

ð�1Þtþ1
for k ¼ 2t þ 1;

(

where dm ¼ Llðð�1ÞmþL
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2l2 � r2

q
� rÞ�1;

for (iii)

Z1N ¼ �T�a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � L2l2

q
þ sa;

*b1ðkÞ ¼
ð�1Þt

d1 for k ¼ 2t;

ð�1Þtþ1
d 0
1 for k ¼ 2t þ 1;

(

where

ðd1; d 0
1Þ ¼

ð�Llðrþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � L2l2

q
Þ�1; 1Þ for la0 or r40;

ð1; 0Þ for l ¼ 0 and ro0:

8<
:

Moreover, in cases (i) and (ii) for any nX1 we have

Z1ðnÞ ¼ Z2ðnÞ ð2:13Þ

and

j1þ n�aZmðnÞj ¼
bðnT � 1Þ

bððn þ 1ÞT � 1Þ

����
����
1=2

ð1þ rðnÞÞ ð2:14Þ

with frðnÞgnX1Al1:

Proof. Consider Eq. (2.4). By (2.5) and by Proposition 2.1 we have (with the

notation of the proposition) (1.2) and (1.29) with n0 ¼ 1; fRðnÞgnX1Al1 and VðnÞ ¼
VN þ n�aSðnÞ; where VN ¼ AN; fSðnÞgnX1AD1; and SðnÞ-SN :¼ Cl: Observe

also that we can assume that SðnÞAM2ðRÞ; since AðnÞ;VN;SNAM2ðRÞ: Moreover,

for T ¼ 2L þ 1 discr VN ¼ �4; and for T ¼ 2L discr SN ¼ 4T�2aðr2 � L2l2Þ:
Thus, to find asymptotics for some solutions of (2.4) we can use Theorem 1.6 for
case (i) and Theorem 1.7(a) and (b) for cases (ii) and (iii), respectively. Using also
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(2.6) we obtain the solutions of (2.1) of the form

u0
mðnT þ sÞ

¼
Yn�1
j¼1

ð1þ j�aZmðjÞÞ
 !

xmðnÞ
Ys�1
j¼0

BðnT þ jÞvmðnÞ
 !

2

ð2:15Þ

for nX0; s ¼ 1;y;T ; m ¼ 1; 2 for (i) and (ii) and m ¼ 1 for (iii), where:

(1)
xmðnÞ ¼

ðið�1ÞmþLÞn�1 for ðiÞ;
ð�1ÞLðn�1Þ for ðiiÞ and ðiiiÞ;

(

(2)
lmðnÞ :¼ ð1þ n�aZmðnÞÞ

ið�1ÞmþL for ðiÞ
ð�1ÞL for ðiiÞ and ðiiiÞ

(
are the eigenvalues of

VðnÞ for large n;
(3) lmðnÞ-ð�1ÞmþL

i for (i), ð�1ÞLZmðnÞ-mmN
for (ii) and (iii) with

mmN
¼

ð�1Þm
iT�a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2l2 � r2

q
þ ð�1ÞLsa for ðiiÞ;

ð�1ÞLþm
T�a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � L2l2

q
þ ð�1ÞLsa for ðiiiÞ;

8><
>:

(4) vmðnÞ-vmN with

vmN ¼
ð1; ð�1Þm

iÞ for ðiÞ;

ð1;Llðð�1ÞmþL
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2l2 � r2

q
� rÞ�1Þ for ðiiÞ;

8<
:

and for (iii)

v1N ¼ ð1;�Llðrþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � L2l2

q
Þ�1Þ for la0 or r40;

ð0; 1Þ for l ¼ 0 and ro0:

8<
:

Moreover, we can also assume that

(5) lmðnÞa0 and in cases (i) and (ii) l1ðnÞ ¼ l2ðnÞ for any nX1:

The linear independence of the two solutions of (2.4) follows the some for u01; u0
2 for

(i) and (ii). In cases (ii) and (iii) the formula for ZmN
follows immediately from (3). In

case (i), to obtain this formula, we can use (2) and (3) and the following perturbation
theory result.

Lemma 2.2. Suppose that fUðnÞgnXn0
; fQðnÞgnXn0

AlðM2ðCÞÞ satisfy

UðnÞ ¼ UN þ n�aQðnÞ; nXn0;

where QðnÞ-QN; UN ¼ ðUNklÞk;l¼1;2; QN ¼ ðQNklÞk;l¼1;2AM2ðCÞ; n0X1; a40:

If UN has two different eigenvalues l1N; l2N; then there exist flmðnÞgnXn0
AlðCÞ for

m ¼ 1; 2 such that lmðnÞ are eigenvalues of UðnÞ for large n and lmðnÞ ¼ lmN þ
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n�aqmðnÞ; where

qmðnÞ-qmN :¼ 1

2

wN

2lmN � tr UN

þ tr QN

	 

; m ¼ 1; 2

with wN ¼ ðUN11 � UN22ÞðQN11 � QN22Þ þ 2ðUN12QN21 þ UN21QN12Þ:

(We omit here the standard proof, based on the formula for roots of second-order
equation.)
Since the lmðnÞ � s from the lemma for UðnÞ ¼ VðnÞ and the ones from (2) are

equal for n-large, thus, by Proposition 2.1 ð�1ÞmþL
iZmN

¼ qmN ¼ 1
2
ð�1ÞL

T1�alþ
ð�1ÞmþL

isa; which proves the formula for ZmN
in case (i).

We have BðnÞ-E; and therefore, by (4)

xmðnÞ
Ys�1
j¼0

BðnT þ jÞvmðnÞ
 !

2

¼ xmðnÞðEsvmNÞ2 þ jmðnT þ sÞ;

where limk-þN jmðkÞ ¼ 0: Moreover, E2 ¼ �I ; and by (1) xmðnÞ ¼ amðð�1Þm
iÞnT ;

where am is a non-zero constant. Hence writing k ¼ nT þ s we have

xmðnÞðEsVmNÞ2 ¼ amðð�1Þm
iÞnT isðvmNÞ2 for sA2N;

isþ1ðvmNÞ1 for se2N;

(

¼ amðð�1Þm
iÞk ðvmNÞ2 for sA2N;

ð�1Þm
iðvmNÞ1 for se2N:

(

If *bm is defined as in the assertion of the theorem, then by (4) we see that

xðnÞm ðEsVmNÞ2 ¼ a0
m
*bmðkÞ with a non-zero constant a0

m; for all cases (i)–(iii). Thus it
remains only to prove (2.13) and (2.14) (for cases (i) and (ii)). The first formula is
obvious by (2) and (5). To prove the second one observe, that by (2) and (5) for large n

j1þ n�aZmðnÞj
2 ¼ jdet VðnÞj ¼ jdet AðnÞjj det ðI � ðAðnÞÞ�1RðnÞÞj:

Therefore by (2.3) and (2.5), and the fact that fRðnÞgnX1Al1 we obtain (2.14). &

Remark 2.1. (a) The restriction lAR is necessary to apply Theorems 1.6 and 1.7,
since VðnÞAM2ðRÞ is an important assumption for the both of them. We do not

analyse also the points l ¼ 7r
L
for T ¼ 2L; because we do not have any version of

Levinson theorem in which the appearance of non-trivial Jordan box for SN ¼ Cl

can be accepted. Nevertheless, as we shall see, the above asymptotic results are
strong enough to prove important spectral results for J:
(b) For cases (i) and (ii) and aAð0; 1Þ formula (2.12) does not give any strong

estimate for jumðkÞj; because (2.13) and re ZmN
¼ 0 follow that

j1þ n�aZmðnÞj ¼ 1þ n�aeðnÞ with eðnÞ-0;
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and no further information on eðnÞ can be found on the base of the first part of the
theorem. Consequently no much stronger estimates than

jumðnT þ sÞj ¼ oðexpðe0n1�aÞÞ

for any e040 can be obtained this way. Much better estimate follows from (2.14).
Namely,

jumðnT þ sÞj ¼ O
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bðnT � 1Þ
p
 !

¼ Oðn�a=2Þ: ð2:16Þ

In case (iii) formula (2.12) contains a key information for us. Since Z1No0

for aAð0; 1Þ and Z1No� 1
2
for a ¼ 1; there exists g41

2
such that j1þ n�aZ1ðnÞjo

j1� gn�1j for large n; and thus

ju1ðnT þ sÞj ¼ Oðn�gÞ ð2:17Þ

(for ao1 better estimates can be found). Therefore, in particular, u1Al21 :

Let us concentrate now on the spectral applications of the asymptotic results for J:
The following result is obtained by the use of subordination theory of Khan and
Pearson [14].

Theorem 2.2. Let J be determined by (2.7). If T ¼ 2L þ 1; then J is absolutely

continuous and sacðJÞ ¼ R: If T ¼ 2L and r is given by (2.10), then J is absolutely

continuous in R\½�jrj
L
; jrj

L
�; sacðJÞ ¼ R\ð�jrj

L
; jrj

L
Þ; and J is purely point in ½�jrj

L
; jrj

L
�:

Proof. Let us study first the subordinated solutions of (2.1) (see [14]). Define (we use
‘‘s.s.’’ for subordinated solution)

Sac ¼flAR: there is no s:s: of ð2:1Þ for lg;

Ssing ¼flAR: the s:s: u of ð2:1Þ for l exists; and ðJuÞð1Þ ¼ luð1Þg:

For cases (i) and (ii) of Theorem 2.1 the subordinated solution does not exist, by the
Janas and Naboko generalization of Behncke–Stolz lemma (see e.g. [10, Lemma 1.5])

and by (2.16). Thus, for T ¼ 2L þ 1 Sac ¼ R; and for T ¼ 2L Sac*R\½�jrj
L
; jrj

L
�: Let

T ¼ 2L: By (2.17), for jljojrj
L

we have u1Al21 ; which implies that u1 is the

subordinated solution. Thus SacCR\ð�jrj
L
; jrj

L
Þ; SsingC½�jrj

L
; jrj

L
�: Moreover, if

lASsing-ð�jrj
L
; jrj

L
Þ then lAsppðJÞ and u1 is the eigenvector for J and l: Hence Ssing

is a countable set. Therefore, using Khan and Pearson Theorem from [14] (see also
[16, Theorem 1.1]) we obtain:

* for T ¼ 2L þ 1 HacðJÞ ¼ l21 ; sacðJÞ ¼ R;
* for T ¼ 2L H

R\½�jrj
L
;
jrj
L
�
ðJÞ ¼ HacðJÞ (since we have ‘‘C’’ and

H
�jrj

L
;
jrj
L

h iðJÞ-HacðJÞ ¼ H
�jrj

L
;
jrj
L

# $ðJÞ-HacðJÞ ¼ f0g; because H
f7jrj

L
g
ðJÞ is
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an eigenspace, or the zero space), sacðJÞ ¼ R\ð�jrj
L
; jrj

L
Þ; and H

½�jrj
L
;
jrj
L
�
ðJÞ ¼

HppðJÞ (since HscðJÞ ¼ f0g by countability of Ssing). &

The above result partially generalizes the result of [16] on ‘‘the spectral gap’’ for
Jacobi matrix with double weights, being the special case of J studied here (for
T ¼ 2; a ¼ 1; and an appropriately chosen cð1Þ and c(2)); see also [4]. It remains an

open problem if the spectrum of J in the gap ð�jrj
L
; jrj

L
Þ is discrete (or even finite), as it

is, e.g. in the double weights case.
Note that a proof of the assertion on the absolute continuity in the above theorem

can be also obtained by the use of the so-called H-class of sequences of 2� 2
matrices—see [16].

2.2. A perturbation of rapidly increasing weights

The next class of Jacobi matrices which can be studied with the help of discrete
Levinson theorems is given by faster increasing weights. Namely let

bðnÞ ¼ na 1þ cðnÞ
n

� 

; nX1 ð2:18Þ

where a41 and c ¼ fcðnÞgnAZ is a T-periodic real sequence, with an even period

T ¼ 2L; and ð1þ cðnÞ
n
Þa0 for nX1: Since such weight sequence do not satisfy the

Carleman condition, we shall assume also self-adjointness of J: To assure that this is
possible (note that J is not self-adjoint e.g. for cðnÞ � 0), we prove the following
lemma being a generalization for arbitrary L of an example found by Kostyuchenko
and Mirzoev [15] (where L ¼ 1; but with the weights of more general form). Define
(cf. also (2.10))

r ¼
X2L

j¼1
ð�1Þj

cðjÞ:

Lemma 2.3. J is self-adjoint provided jrjXLða� 1Þ:

Proof. By Berezanskii [2, Chapter V, Lemma 1.5], it is enough to check that there

exists a solution to (2.1) which is not in l21 for some lAC: Taking l ¼ 0 and

computing the two solutions with boundary conditions ðuð1Þ; uð2ÞÞ ¼ ð0; 1Þ or ð1; 0Þ;
we see that this is true when one of the following conditions holds:

ðiÞ
XþN

n¼1

Yn

j¼1

bð2j � 1Þ
bð2jÞ

 !2

¼ þN; ðiiÞ
XþN

n¼1

Yn

j¼1

bð2jÞ
bð2j þ 1Þ

 !2

¼ þN:

Using the Gauss test (for the series being the sums of the terms of the above series
for ‘‘n ¼ Lk’’) we can compute that the condition rXLða� 1Þ gives (ii) and
�rXLða� 1Þ gives (i). &
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Similarly as in the previous subsection, we want to compute now an asymptotic
formula for the sequence of grouped transfer matrices AðnÞ defined by (2.5). In this

case these computations are much simpler, since we have a41 (and thus f1=nagAl1).
Indeed, for any j ¼ 0;y;T � 1; nX1 we can easily obtain

BðnT þ jÞ ¼ E þ n�1 0 0

fj 0

 !
þ RjðnÞ;

where fj ¼ T�1ðaþ cðjÞ � cðj � 1ÞÞ and fRjðnÞgnX1Al1: Thus for nX1

AðnÞ ¼ ð�1ÞL þ n�1SN þ RðnÞ;

where fRðnÞgnX1Al1 and (by the calculations similar to these used in the proof of

Proposition 2.1)

SN ¼ ð�1ÞL�1

a
2
þ r

T
0

0
a
2
� r

T

0
B@

1
CA: ð2:19Þ

Thus SN does not depend on l and discr SN40; if ra0:
We can now formulate the theorem on asymptotic behaviour of a generalized

eigensolution and of spectral properties for J:

Theorem 2.3. If ra0; then the generalized eigenequation (2.1) for J determined by

(2.18) and for lAR has a non-zero solution u of the form

uðnT þ sÞ ¼
Yn�1
j¼1

1� j�1
a
2
þ jrj

T

� 
� 
 !
bðnT þ sÞ; ð2:20Þ

nX0; s ¼ 1;y;T ; where limk-þN bðkÞ � *bðkÞ ¼ 0; with *b being the 4-periodic

sequence defined by:

ð *bð0Þ; *bð1Þ; *bð2Þ; *bð3ÞÞ ¼
ð0;�1; 0; 1Þ for r40;

ð1; 0;�1; 0Þ for ro0:

(
ð2:21Þ

If, moreover, J is self-adjoint, then J is a purely point operator.

Proof. Define m1N :¼ ð�1ÞL�1ða
2
þ jrj

T
Þ and m2N :¼ ð�1ÞL�1ða

2
� jrj

T
Þ; and observe that

m1N; m2N are the eigenvalues of SN satisfying ð�1ÞLðm2N � m1NÞ40: Thus, by
Theorem 1.7(b) and by (2.6) Eq. (2.1) has a non-zero solution u of the form

(obtained after multiplying by ð�1ÞL of the solution from Theorem 1.7)

uðnT þ sÞ ¼
Yn�1
j¼1

1� j�1
a
2
þ jrj

T

� 
� 
 !
ð�1ÞnL

Ys�1
j¼0

BðnT þ jÞvðnÞ
 !

2

;

nX0; s ¼ 1;y;T ; where vðnÞ- e1 for r40;
e2 for ro0:

%
Since BðnÞ-E; we have (2.20)

with *bðnT þ sÞ ¼ ð�1ÞnLðEsejÞ2; where j ¼ 1 for r40 and j ¼ 2 for ro0: Thus using
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EnTþs ¼ E2nLþs ¼ ð�1ÞnL
Es we obtain *bðkÞ ¼ ðEkejÞ2; which gives (2.21). Now,

observe that by (2.20), uAl21 ; since ða
2
þ jrj

T
Þ41

2
: Therefore, using the same

subordination theory arguments as in the proof of Theorem 2.2 we obtain the last
assertion of our theorem. &

2.3. A Jacobi matrix with divergent sequence of transfer matrices

The aim of this section is to present an example of Jacobi matrix, for which ‘‘the
discrete Hartman–Winter theorem’’ (Theorem 1.3) can be used to obtain the
asymptotics of solutions of the generalized eigenequation.
We follow here the notation and the definitions of the previous section. We only

change the formula for the weights bðnÞ: Let faðnÞgnX1 be a real sequence satisfying

aðnÞa0; aðnÞ-aNAR\f�1; 0; 1g; let aAð1
2
; 1�; and for nX1 define

bð2nÞ ¼
Yn

j¼1
1þ a

j

� 

; bð2n � 1Þ ¼ bð2nÞaðnÞ: ð2:22Þ

We haveYn

j¼1
1þ a

j

� 

¼ can

a þ oðnaÞ; ca40; ð2:23Þ

which, by the Carleman criterion, gives the self-adjointness of J (see e.g. [2]). In the
previous section the sequence of the transfer matrices was convergent to the limit E:
Here fBðnÞgnX2 is not convergent, but we have

Bð2nÞ-
0 1

�aN 0

 !
; Bð2n þ 1Þ-

0 1

�a�1
N

0

 !
: ð2:24Þ

Proposition 2.2. Let J be determined by (2.22). The generalized eigenequation (2.1) for

J and lAR has two linearly independent solutions u1; u2 of the form

u1ð2n þ sÞ ¼
Yn�1
j¼1

aðjÞ
 !

b1ð2n þ sÞ;

u2ð2n þ sÞ ¼ n�a
Yn�1
j¼1

aðjÞ
 !�1

b2ð2n þ sÞ

for nX0; s ¼ 1; 2; such that limk-þN bmðkÞ � *bmðkÞ ¼ 0; m ¼ 1; 2; with

f *bmðkÞgkX1AlðRÞ being the 4-periodic sequence given by

*bmðkÞ ¼
0 for k ¼ 2n þ m � 1;

ð�1Þn
for k ¼ 2n þ m:

(

Moreover J is a purely point operator.
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Proof. Define AðnÞ :¼ Bð2n þ 1ÞBð2nÞ for nX1 (i.e. AðnÞ is given by (2.5) with
T ¼ 2). We have AðnÞ ¼ LðnÞ þ RADðnÞ þ RDðnÞ where

LðnÞ ¼
�aðnÞ 0

0 �ðaðn þ 1Þð1þ a
nþ1ÞÞ

�1

 !
;

RADðnÞ ¼
0 lðbð2nÞÞ�1

�laðnÞðbð2n þ 1ÞÞ�1 0

 !
;

RDðnÞ ¼
0 0

0 l2ðbð2nÞbð2n þ 1ÞÞ�1

 !
;

and by (2.22) and (2.3), for (2.4) all the assumptions of Theorem 1.3 are satisfied.
Thus, using (2.6) (which is valid for any weight sequence) with T ¼ 2 we obtain two
linearly independent solutions of (2.1) of the form

u0
1ð2n þ sÞ ¼

Yn�1
j¼1

aðjÞ
 !

ð�1Þn�1 Ys�1
j¼0

Bð2n þ jÞv1ðnÞ
 !

2

;

u0
2ð2n þ sÞ ¼

Yn�1
j¼1

ðaðj þ 1Þ 1þ a
j þ 1

� 

Þ�1

 !
ð�1Þn�1

�
Ys�1
j¼0

Bð2n þ jÞv2ðnÞ
 !

2

for nX0; s ¼ 1; 2; where vmðnÞ-em: By (2.23) and (2.24) we have

u0
1ð2n þ sÞ ¼

Yn�1
j¼1

aðjÞ
 !

ðð�1Þn�1d1ðsÞ þ j1ð2n þ sÞÞ;

u02ð2n þ sÞ ¼ n�a
Yn�1
j¼1

aðjÞ
 !�1

ðð�1Þn�1
cd2ðsÞ þ j2ð2n þ sÞÞ;

where c is a non-zero constant, jmðkÞ-0 and

d1ðsÞ ¼
�aN for s ¼ 1;

0 for s ¼ 2;

(
d2ðsÞ ¼

0 for s ¼ 1;

�a�1
N

for s ¼ 2:

(

Observe, that for k ¼ 2n þ s; with s ¼ 1; 2; nX0 we have ð�1Þn�1dmðsÞ ¼ c0m
*bmðkÞ

(for *bm defined as in the assertion of the theorem), for some non-zero constants
c0m; m ¼ 1; 2: This proves ‘‘the asymptotic part’’ of the theorem. To prove that J is

purely point we can proceed analogously to the proof of Theorem 2.2 for T ¼ 2L;

since for any lAR one of the solutions u1; u2 is in l21 (u1 if jaNjo1; and u2 if jaNj41)

(and hence Sac ¼ f; and lASsing iff lAsppðJÞ). &
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Note, that Theorem 1.3 is the unique result of Section 1 which could be used
directly to study Eq. (2.4) (for AðnÞ defined in the above proof), since

fRADðnÞgnX1el1 for la0: We could also try to use Theorem 1.5 with VðnÞ ¼
LðnÞ þ RADðnÞ; but the condition faðnÞgnX1AD1 is necessary then.

Note also that the proof of the spectral part of Proposition 2.2 can be also

obtained by the use of some weaker estimates for the l2 solution of the generalized
eigenequation. For instance, Freiman’s generalization of the Perron theorem for
discrete systems (see [8]) can be used there.
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